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Abstract: Next Generation Sequencing (NGS) analysis has become a widely used method for studying the structure of DNA 
and RNA, but complexity of the procedure leads to obtaining error-prone datasets which need to be cleansed in order to avoid 
misinterpretation of data.  We address the usage and proper interpretations of characteristic metrics for RNA sequencing (RNAseq) 
quality control, implemented in and reported by FastQC, and provide a comprehensive guidance for their assessment in the context 
of total RNAseq quality control of Illumina raw reads. Additionally, we give recommendations how to adequately perform the 
quality control preprocessing step of raw total RNAseq Illumina reads according to the obtained results of the quality control 
evaluation step; the aim is to provide the best dataset to downstream analysis, rather than to get better FastQC results. We also 
tested effects of different preprocessing approaches to the downstream analysis and recommended the most suitable approach. 
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Introduction  

High throughput sequencing technologies pro-
vide a way of studying the structure of genetic 
material, both DNA and RNA. Complexity of the se-
quencing procedures results in error-prone data 
sets, which need to be properly treated in order to 
obtain relevant results from downstream analyses. 
This process is more complex in the case of RNA se-
quencing (RNAseq), as it includes additional step of 
reverse transcription of RNA molecules to comple-
mentary DNA (cDNA), after which the common steps 
(as for DNA sequencing) are performed: amplifica-
tion, fragmentation, purification, adaptor ligation, 
and sequencing. On the other hand, RNAseq today 
is intensively used for a number of analyses, such as 
characterization of transcriptional activity, quantifi-
cation of gene expression, differential gene expres-
sion, analysis of alternative splicing, functional anal-

ysis, gene fusion detection, etc. Because of demands 
for the greatest possible reliability of data that will 
be used in such analysis, it is of the highest impor-
tance to estimate the quality of obtained reads and 
how the quality of reads will or could affect final re-
sults of the analysis [1]. In many cases, it is better to 
omit low quality reads from further processing than 
to cause the misinterpretation of data.

Quality control consists of two steps: evaluation 
and preprocessing. The evaluation step consists of 
a number of metrics which indicate quality of as-
sessed raw reads, while the preprocessing step in-
cludes sequence filtering according to results of the 
evaluation step. Since there is a plethora of available 
tools, it is challenging for new users to appropriate-
ly choose between these tools and to adapt to new 
ones. Some of them are general tools, meant for both 
DNA and RNAseq raw reads, including both steps of 
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quality control like NGS QC Toolkit, FASTX-Toolkit, 
PRINSEQ, QC-Chain, FaQCs, HTQC and others are 
designed just for one of the tasks. While there are 
plenty of tools for preprocessing available, i.e. Trim-
momatic [2], SolexaQA, Trim Galore!, Cutadapt, De-
conSeq, ConDeTri, Sicle, Scythe, Seqtk, SortMeRNA, 
BBDuk and BBSplit, VecScreen, Kraken, none of 
them performs all the preprocessing tasks. On the 
other hand, there are just several tools designed for 
the purpose of evaluation of raw reads (FastQC [3], 
seqTools, fastqp) that provide standard metrics for 
estimation of raw data quality. Discovery of contam-
inant sequences (sequences that originated from 
other organisms than the one that was sequenced) 
demands specific evaluation tools and they include 
tools like FastQ Screen and VecScreen. Because it 
is necessary for quality preprocessing and further 
steps of downstream RNAseq analysis to estimate 
error probability in raw reads, we focus on raw reads 
quality evaluation. The vast majority of researchers 
today use FastQC [3] in combination with some of 
the tools specially designed for filtering NGS data. 
However, FastQC operates by creating flags on da-
tasets based on several metrics and their expected 
values in the case of DNA experiments which is often 
misleading for RNAseq experiments. Additionally, 
special attention should be paid in the preprocess-
ing step in order to enable the assessment of reliable 
results for further analysis of RNAseq data because 
the stringent approach, which is widely used, might 
not be the best choice for transcriptome data. 

In this paper, we address the usage and proper 
interpretation of metrics for RNAseq quality control, 
implemented in and reported by FastQC, such as Per 
base sequence content, Per sequence GC content, 
Sequence Length Distribution, Sequence Duplica-
tion Levels, Overrepresented sequences, and Kmer 
Content and provide a comprehensive guidance 
for their assessment in the context of total RNAseq 
quality control of Illumina raw reads. Also, we give 
recommendations on how to adequately perform 
the preprocessing step of raw total RNAseq Illumina 
reads according to the obtained results of the evalu-
ation step, with an aim not to get better FastQC re-
sults, but to provide the best dataset to downstream 
analysis.

QC evaluation
Evaluation of raw reads is the first step in se-

quencing analysis and serves to determine the va-
lidity of sequenced data. One of the mostly used 
tools for quality control is FastQC, developed by the 
Babraham Institute in Cambridge. It is included in 
many bioinformatics software (Galaxy, Illumina 
BaseSpace, GenePattern, Chipster, Yabi, Taverna, 
KNIME, Tavaxy, BioDT), and in that way it became 
a sort of a standard tool for evaluation of NGS data.

This tool takes fastq, SAM or BAM file as input, 
quickly performs quality analysis of provided data 
and outputs results in html format. Quality analy-
sis consists of 12 metrics (Basic Statistics, Per base 
sequence quality, Per tile sequence quality, Per se-
quence quality scores, Per base sequence content, 
Per sequence GC content, Per base N content, Se-
quence Length Distribution, Sequence Duplication 
Levels, Overrepresented sequences, Adapter Con-
tent, Kmer Content). Most of the metrics are repre-
sented graphically, only Basic Statistics and Overrep-
resented sequences are presented in tabular format. 
The exception is the  Kmer content module, which 
is shown in both ways (graphically and in tabular 
format). For each metric a section in the resulting 
report is made, flagged as ‘PASSED’, ‘WARNING’ or 
‘FAILED’. The flags are given based on the expected 
values for sequencing DNA data. At FastQC down-
load page examples of good and bad data for dif-
ferent sequencing platforms are available. Illumina 
platform is widely used for conducting RNAseq ex-
periments, and for Illumina data the FastQC author 
suggests that a good report should be mostly flagged 
as PASSED - only one checkpoint (Kmer content) is 
flagged as WARNING. However, since the FastQC 
tool expects diversity and randomness in data even 
a slight deviation will issue a warning, while severe 
one will result in failure. Because the correct inter-
pretation of the FastQC report is crucial for other 
steps of the analysis, flags provided by the program 
itself cannot be taken for granted. Although the 
checkpoints like Basic Statistics, Per base sequence 
quality, Per tile sequence quality, Per sequence qual-
ity scores, Per base N content and Adapter Content 
have universal interpretation and high quality data 
should pass all of them, other checkpoints are spe-
cific for different types of sequencing experiments 
(DNAseq or RNAseq). All of the specific checkpoints 
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will be discussed briefly in the context of Illumina 
RNAseq experiments evaluated with FastQC v0.11.5. 

Per base sequence content
This checkpoint shows the percentage of each 

base in each position and it is represented with a 
graph. According to FastQC interpretation little to 
no difference is expected between representations 
of bases, presented as four smooth lines around 
25% (Fig. 1a). Warning is issued if the difference 
between base pairs is greater than 10% in any posi-
tion, while failure is shown if this difference is great-
er than 20% (Fig. 1b). Analysis of the most of Illumi-
na RNAseq data issues a failure in this checkpoint, 
usually not because of any of the common reasons. 
As stated in help files, but not pointed out in results, 
the main reason of such failure is the way in which 
RNAseq libraries are produced (by priming using 
random hexamers, which is why the bias at the start 
positions is expected). This is particularly the char-
acteristic of the first 10-13 positions at the 5′-end 
Illumina RNAseq data and read count reweighting 
scheme is proposed in order to reduce the impact of 
this bias [5]. Alternative approach would be to use 
oligo(dt) priming, but the same study showed that, 
in this case, data would be highly biased toward 3’-
end, and that bias cannot be easily mitigated. Pres-
ence of polyA/T tails is another cause of bias at the 
3’-end, unrelated with the way of priming. Also, we 
noted that the abscissa of the representation plot 
is not equally divided; first nine positions are given 
separately for each data, and the longer the read the 
more distant other points become, and sometimes 

even given as ranges. For long reads this gives a false 
impression that the data at the start positions are 
more deviated.

All Illumina RNAseq data will issue a warning or 
failure in the Per base sequence content module. The 
choice of further steps depends on the main goal of 
sequencing and the nature of available referent re-
sources for the organism under investigation. If de 
novo assembling is in plan, it is advised to remove 
first 10-13 bases, while in other cases these bases 
should be retained.

Per sequence GC content
This plot shows the GC content of each sequence 

for each position compared to the modeled normal 
distribution, because it is expected that the random 
library has a nearly normal distribution. It is mis-
leading to interpret the modeled distribution as a 
curve that shows information from the reference 
genome or transcriptome of the sequenced organ-
ism. This is just a Gaussian distribution parameter-
ized according to the mean and variance of the GC 
content of the provided reads. Reads will pass this 
checkpoint if the GC content curve does not deviate 
too much from the modeled distribution (Fig. 2a). If 
sequences outside of the normal distribution com-
prise more than 15% of the total, FastQC will raise 
a warning, while failure is given if these reads com-
prise more than 30% of the total (Fig. 2b). 

Figure 1. Per base sequence content graphs showing the read position on X-axis and percentage of each base on Y-axis, a) DNA-seq 
Illumina data - passed b) total RNAseq Illumina data - failed
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Different types of deviation have different mani-
festations. If the plot is shifted in comparison with 
the modeled distribution, the reason is systematic 
bias and FastQC will not flag this as an error. Anoth-
er reason for the shifted distribution could be the 
presence of polyA/T tails (when shifted to the left) 
and rRNA richness (when shifted to the right) in 
data [6]. On the other side, the same reasons could 
manifest like shoulders or peaks in the distribution 
plot, only in that case it will be reported as error, be-
cause any distribution that has peaks and/or is not 
unimodal is by default addressed as an error. In the 
distribution plot, different kinds of contamination 
(adapter dimers and sequences from other organ-
isms) are usually represented with peaks. The shape 
of the distribution curve is also affected by the short 
reads, characteristic for total RNAseq reads, and 
duplicate-rich reads, which are characteristic for all 

RNAseq experiments. Additionally, in RNAseq data 
for organisms with highly repetitive genomes GC 
content varies due to the presence of some classes 
of transposons which are GC rich [7][8]. As a con-
sequence of aforementioned, GC content plot could 
take some form of bimodal distribution. These flaws 
affect many metrics used in QC and a common way 
of dealing with these flaws of RNAseq data is to per-
form, after removing contamination, de novo assem-
bling of reads into larger contigs which should miti-
gate or even completely eliminate the second peak 
and smooth the main peak.

Sequence Length Distribution 
For sequence length distribution it is expected to 

be uniform (Fig. 3a). If the read length is variable, 
warning is issued (Fig. 3b), and failure is caused due 
to the presence of sequences of zero length. 

Figure 2. Per sequence GC content shows the mean GC content on X-axis, while the number of reads is shown on Y-axis; a) DNA-seq 
Illumina data-passed; b) total RNAseq Illumina data-failed

Figure 3. Sequence length distribution shows different sequence lengths on X-axis and Y-axis presents number of reads; a) DNA-seq 
Illumina data-passed; b) total RNAseq Illumina data-warning
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The Help files specify that for some high through-
put sequencers it is usual to have different read 
lengths although this will give a warning. For Illumi-
na it is expected to have the equal length for all reads, 
but in the case of total RNAseq, some RNA molecules 
are shorter (like small and microRNA), which is why 
warnings in this module can be ignored.

Sequence Duplication Levels
This checkpoint estimates the degree of duplica-

tion using an exact sequence match in a specific way. 
Common duplicates include PCR and optical dupli-
cates. PCR duplication can arise in transcriptome 
data because of the specific way of sample prepa-
ration and optical duplicates which are the conse-
quence of reading the same cluster twice or more 
times on sequencer.

Due to reducing memory usage, only sequences 
that firstly occur in the first 100,000 sequences are 
taken into account. Additionally, sequences longer 
than 75 bp are truncated to 50bp. The aforemen-
tioned optimizations should provide a good esti-
mate of the data, but this is not the case for RNAseq 
reads. RNAseq reads tend to be several times longer. 
Because the transcriptome data include products 
of alternative splicing, it is possible that different 
RNAseq reads have some of the first bases the same 
and the rest of the sequence different. Also, in RNA-
seq data we expect a plethora of highly expressed 
sequences and for highly expressed sequences it is 
expected to have multiple occurrences in the da-
taset. Regardless, if duplicate sequences make up 
more than 20% of the sequences taken into account, 

FastQC will issue a warning, and if there is more than 
50% of the duplicate sequences, this checkpoint will 
raise an error (Fig. 4b).

In section “Common reasons for warnings” of 
FastQC Help files it is indicated that warnings for 
RNAseq data could arise because of the nature of the 
experiment. We state, based on the aforementioned, 
that if PCR duplicates and contaminants problems 
are excluded, any kind of error in this module does 
not affect the overall quality of the RNAseq data 
even if duplication level is higher than 50%.

Overrepresented sequences
All sequences that represent more than 0.1% of 

total sequences are labeled as overrepresented and 
presented in a table with count, percentage and pos-
sible source of the sequence (Fig. 5). Warning will 
be issued if at least one overrepresented sequence 
is found. A failure will arise if there is at least one 
sequence that represents more than 1% of the total 
data. 

To conserve memory, this checkpoint looks for 
candidates for overrepresented sequences in the 
first 100,000 sequences, but candidates are tracked 
through the whole dataset, therefore more overrep-
resented sequences could be found in the dataset. 
Databases of known contaminants are queried by 
overrepresented sequences that were found and 
best hits are being reported. Since Illumina RNAseq 
library preparation includes adapters (that are usu-
ally removed, but sometimes some of them remain 
in the sequences), this module will label them and 
they should be removed from the data.

Figure 4. Sequence duplication level shows different degrees of duplication on X-axis and percentage of the duplication is shown on 
Y-axis; a) DNA-seq Illumina data-passed; b) total RNAseq Illumina data-failed
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Kmer Content
In total RNA sequencing a lot of different types of 

molecules are sequenced. Because of the presence of 
small RNA, mitochondrial and chloroplastic (in case 
of plants) RNA, residual rRNA (mostly removed dur-
ing a library preparation, but some rRNA may still 
remain), overrepresentation of the sequences is ex-
pected to some extent. Also, alternative splicing and 
differential gene expression affect the number of 
overrepresented sequences. Taking into account the 
aforementioned, we conclude that warnings and fail-
ures can be ignored as long as adapters are trimmed.

The K-mer module is similar to the overrepre-
sentation module. This checkpoint seeks for por-
tions of the sequences, 7-mers that show position-
al bias according to the binomial test. In that way 
it could identify parts of sequences that can cause 
problems in further analysis. It is represented du-
ally. For graphical representation it is characteristic 
that values on the X-axis are unequally represented. 
In tabular representation count, p-value, frequency 
and position in the read are shown, enabling to re-
construct the longer kmers (Fig. 6). 

Because this type of analysis is slow, only 2% of 
the data is processed. The sequenced data is consid-
ered good if the presence of k-mers is balanced. If 
a binomial p-value is less than 0.01 for any k-mer, 
warning will be given (Fig. 7), and if p-value is less 
than 0.00001 a failure will occur.

This is another module affected by the Illumina 
bias at the 5’-end of reads and adapters and polyA 
tails at the 3’-end of the RNAseq reads, but these er-
rors can be ignored as long as adapters are trimmed.

QC preprocessing
Because regions of low quality carry less infor-

mation of interest, the main step in preprocessing 

Figure 5 Overrepresented sequences in totalRNAseq data - warning

Figure 6. List of k-mers
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is to deal with these kinds of sequences. Other steps 
in the preprocessing of NGS data depend on results 
obtained by the QC evaluation software. As stated 
in previous section, Illumina’s characteristic 5’ nu-
cleotide bias, PCR and optical duplicates, polyA/T 
tails, rRNA and different kinds of contaminants, 
like adapters and genomic sequences that belong 
to different organisms than the sequenced one, are 
recognized by the QC evaluation tools as errors in 
data that should be removed in the QC preprocess-
ing step. Many QC preprocessing tools have similar 
functionalities but they differ in speed, available re-
sources (like adapter files) and effectiveness. 

Processing of low quality data
The presence of low quality data is mainly the 

result of systematic errors and in the case of Illu-
mina platform, common error is substitution. There 
are three general approaches in the preprocessing 
of low quality NGS data: error correction, masking 
and trimming. For error correction, there are three 
groups of methods applicable to Illumina data: k-
spectrum-based methods (Rcorrector [9], Quake, 
Reptile, Hammer, Musket, Bless, Bloocoo, Lighter, 
Trowel), multiple sequence alignment (SEECER Kar-
ect, Coral, ECHO) and suffix array/tree-based meth-
ods (Fiona, SHREC, HSHREC, HiTEC, RACER) with 
only SEECER and Rcorrector being specially de-
signed for RNAseq data. Brief description and evalu-
ation of all methods can be found in [10], while the 
evaluation of different k-spectrum-based tools, as 
the dominant method for Illumina data, is available 
in [11]. Because k-spectrum-based error correction 

method uses only local information from sequenced 
reads, it is not suitable for analyses that include the 
read mapping task since mapping is done globally. 
On the other hand, this method is very useful for 
analyses with de novo assembling in plan because it 
reduces complexity of created graphs and speeds up 
the whole process of assembling [12]. Moreover, this 
error correction method is an integral part of some 
assembling tools like SOAPdenovo, ALLPATHS_LG, 
SGA and SPAdes. 

When downstream analyses include read map-
ping, common approaches for dealing with low 
quality bases are masking and trimming. Masking is 
a non-invasive process of dealing with low quality 
data which implies substitution of low quality bases 
with N’s. This is mostly performed with in house 
scripts, but there is also a tool, FASTQ Masker, in-
cluded in FASTX-toolkit. 

Although masking is a lenient method and it is 
shown that masking is more effective than trimming 
in SNP detection [13], trimming is the commonly 
used technique for this task. Trimming implies re-
moving low-quality parts of sequences and because 
this is the main task of QC preprocessing, most of 
the general QC preprocessing tools have this func-
tionality. Window-based (ConDeTri, PRINSEQ, Sick-
le, SolexaQA, Trimmomatic) and running sum (Cut-
adapt, SolexaQA with -bwa option, Seqtk) are two 
types of algorithm families used in trimming soft-
ware, where the first approach gives better results 
for common RNAseq tasks like SNP calling, gene ex-
pression analysis and de novo assembly [14]. Trim-
ming has different levels of stringency ranging from 

Figure 7. K-mer content shows position in the reads on X-axis and relative enrichment of a k-mer on Y-axis; a) DNA-seq Illumina 
data-warning; b) total RNAseq Illumina data-failed
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mild, with removing bases with quality less than 
5 (recommended by [15]), to more aggressive ap-
proach with quality threshold between 20 and 30 
(recommended by [14]). Because the main goal of 
RNAseq is to get as much as possible information 
from the data, we recommend a milder approach for 
trimming.

Clipping 5’ end
To overcome Illumina 5’ end sequence content 

bias caused by random hexamers (presented on 
Per base sequence content plot), two approaches 
are suggested. One of them is a correction method 
specially designed for solving this kind of problem, 
described in  [16] and the other one is clipping. Al-
though clipping is always a loss of information (be-
cause it includes removing the correct bases too), 
this is a widely adopted QC technique for eliminat-
ing 5’end Illumina bias. Alternative to overcome this 
problem is not to eliminate the bias. Rationale be-
hind this is that we can try to conduct downstream 
analyses without clipping the leading bases, and if 
we get poor results, we can always go one step back 
and use one of the aforementioned methods to over-
come it.

Adapter removal
In total RNAseq it is common that sequenced 

fragments are shorter than the read length, which 
may result in adapter sequences left over. The pres-
ence of adapters is checked in QC evaluation, and 
if adapters are highly abundant, they will be listed 
in overrepresented sequences. Also, the presence 
of adapter sequences affects GC content and K-mer 
content plot. According to the aforementioned it is 
clear that all adapter sequences should be removed. 
This can be done with any general QC preprocessing 
tool.

Removing contaminants 
Contamination of RNA sequences may arise from 

different reasons and it can affect several QC evalu-
ation checkpoints, like Per sequence GC content, 
Sequence duplication level and Overrepresented 
sequences. If the goal is just to identify contami-
nants the appropriate tool is FastQ Screen or Vec-
Screen, while tools like DeconSeq and BBSplit are 
used for actual decontamination. Another method 

for removing contaminants includes read mapping 
to possible contaminants genomes, but the same 
method can be used in order to check the percent-
age of contamination. For any kind of contamination 
detection or removal it is necessary to provide se-
quences/genomes of possible contaminants. Com-
mon contaminants in Illumina total RNAseq is PhiX 
control viral DNA, Illumina TruSeq primers, vec-
tors like plasmid, phage, cosmid, BAC, PAC, YAC and 
transposable elements from the cloning host which 
is usually Escherichia coli or yeast. Other possible 
contaminants are the result of impurities in the RNA 
sample and include microbes and other organisms 
that are being sequenced in the lab. The list of pos-
sible contaminants is not finite, and we cannot know 
in advance which contaminants are expected to be 
present in the dataset.

Complete list of contaminants can be obtained us-
ing BLAST, but this is a time consuming task because 
of the huge number of sequences in the RNAseq 
dataset. Similar, but less time consuming approach 
would be to randomly select some reasonable num-
ber of sequences (eg. 500) from a transcriptome da-
taset and to blast them. Another approach would be 
to execute initial mapping and to BLAST unmapped 
sequences. Anyway, if contaminants do not com-
prise a significant number of sequences they will 
not affect the read mapping step, but for assembling 
they should be removed.

Removing PCR and optical duplicates
As stated in the previous section, although du-

plicates affect sequence duplication levels plot and 
GC content plot, removing them in RNAseq data can 
be more harmful than useful because read counts 
play a significant role in the downstream analysis of 
RNAseq data. If there is a good reason for removing 
the duplicates, one should be aware that, because it 
is much easier to locate duplicates after then before 
read mapping, available tools require a BAM file as 
input. In order to identify duplicates, Picard Esti-
mateLibraryComplexity can be used. Widely used 
tools are Samtools rmdup (for removing PCR dupli-
cates) and Picard MarkDuplicates (for marking or 
removing optical duplicates). 

Removing polyA/T tails and rRNA 
During the process of cleavage and polyadenyl-
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ation, mRNA is enriched with polyA/T tails near the 
3’end. The presence of polyA/T tails in the RNAseq 
can be seen in several modules of FastQC report: Per 
base sequence content, Per sequence GC content and 
Kmer content. PolyA/T tails can be removed by tools 
like PRINSEQ (options –trim_tail_right and –trim_
tail_left) or with in house scripts. But, one should 
have a good reason for removing polyA/T tails be-
cause although they affect QC evaluation, they have 
no influence on read mapping (most mappers are 
not affected by presence of polyA/T tails) and, actu-
ally, they are beneficial for de novo assembling (be-
cause the polyA/T tail marks the end of transcript).

As part of the transcriptome, rRNA is expected 
to be present in the dataset to some extent. High 
abundance of rRNA can affect some checkpoints in 
QC evaluation, like GC content plot and overrepre-
sented sequences, and they are often flagged as con-
taminants. Usually, rRNA is not of interest for down-
stream analysis and, as all other contaminants, it 
can be removed from the dataset with specific tools 
(SortMeRNA, BBDuk) or with mapping to the set of 
rRNA sequences available in sources like SILVA and 
Rfam database. But, the removal is not necessary 
because the high level of rRNA presence in RNAseq 
data does not represent actual contamination of the 
dataset. It just means that the dataset contains less 
mRNA than it is expected and because the presence 
of rRNA doesn’t affect the next step of analysis (read 
mapping or de novo assembling), it is not necessary 
to remove rRNA from the dataset. Nevertheless, the 
exact level of rRNA presence in the dataset should 
be determined in order to resolve the amount of 
RNA of interest, using tools for identifying the level 
of contamination like FastQ Screen.

Sometimes rRNA has influence on specific RNA-
seq analysis and, in that case it can be masked. For 
example, in order to increase FPKM values (which 
have influence on differential gene expression) it is 
desirable to exclude rRNA, tRNA, mitochondrial and 
chloroplastic RNA and similar elements from analy-
sis. This can be done with Cufflinks tool using –M 
option.

Use case – evaluation of QC preprocessing 
methods
According to the aforementioned, we formed 

two groups of proposed QC preprocessing steps: 

lenient and stringent, both intended to be used af-
terwards for read mapping and de novo assembling. 
Lenient group for mapping included: (1) trimming 
a read when average quality over a 4bp sliding win-
dow drops below 5 – Q5, (2) combination of Q5 
with removal of adapters – AQ5, (3) combination 
of contamination removal with AQ5 – CAQ5, while 
stringent one comprised: (1) trimming a read when 
average quality over a 4bp sliding window drops 
below 25 – Q25, (2) combining adapter removal 
with Q25 – AQ25, and (3) removal of contamination 
combined with AQ25 – CAQ25. If the ending data-
set contained reads shorter than 25bp, such reads 
were discarded. For the assembly, we used the data-
set with removed adapters and contamination (CA) 
as a starting point. Lenient group was composed of 
the CAQ25 dataset and error corrected CAQ5 data-
set (EC). Stringent group was formed by removing 
the first 11 bases from EC and CAQ25 datasets form-
ing ECC and CAQ25C datasets, respectively. With le-
nient QC preprocessing steps, the resulting dataset 
will retain more information, and with stringent 
one the preprocessed dataset will consist of higher 
quality sequences. Both groups of approaches were 
compared to the naïve approach which refers to raw 
data analyses (R).

The dataset
To test the impact of two groups of QC prepro-

cessing steps, we used a publicly available dataset 
of human breast cancer transcriptome with NCBI 
SRA accession number SRR2753165. This dataset 
contains raw Illumina Hiseq 2500 35-50bp single 
end transcriptome data, with cDNA Library being 
constructed using TruSeq stranded total RNA with 
Ribo-Zero Gold (for rRNA removal). Such useful 
information can guide us in determination of used 
adapters and primers as well as in the understand-
ing of some QC evaluation results. In this example, 
the shape of the curve in the sequence length dis-
tribution plot is expected to be as in Fig. 3b because 
sequences are of variable length. Also, because the 
dataset is composed of transcriptome sequences, 
the peaks in the right part of the sequence duplica-
tion level graph are expected (as in Fig .4b).

Other FastQC results of interest are presented in 
Figures 1b, 2b, 5, and 7b. Deviations in 3’end in dis-
tribution of bases in sequences (Fig. 1b), in k-mer 
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content plot (Fig. 7b) and shift to the right in the GC 
content plot (Fig. 2b) imply the high abundance of 
polyA/T tails. We used NCBI BLAST [17] to deter-
mine origins of overrepresented sequences (Fig. 5). 
In this case, they were all small nuclear RNA (sn-
RNA): 16 of them were 7SL RNA (type of SRP RNA 
and part of Alu transposable element), 3 were 7SK 
RNA, 3 were uncharacterized SRP RNA and 1 was 
uncharacterized snRNA. Both 7SL RNA and 7SK RNA 
are highly abundant GC-rich sequences. SRP RNA 
defines perinucleoar compartment [18] which is 
known to be present in breast cancer genomic data 
[19]. This explains the peculiar shape of GC content 
plot (Fig. 2b) to some extent. Other reasons include 
higher number of duplication sequences and abun-
dance of rRNA sequences in the dataset.

To get deeper insight in the dataset content, 
we checked the level of contamination using Fastq 
Screen (Fig. 8). In order to determine the list of pos-
sible contaminants from other species, we sampled 
500 reads from unmapped reads and blasted them 
against the human reference genome. Sampled se-
quences that remained uncharacterized were blast-
ed against BLAST nt database. We detected con-
tamination with Enterobacteria phage phiX174, so 
we used a standard list of contaminants. With less 
than 1% of PhiX and vectors from the UniVec [20] 

database, we may state that the dataset contamina-
tion is low. Further steps depend on the choice of 
the following step in downstream analyses. For the 

mapping step there is no need to clean the dataset 
because the contaminants will not map to the refer-
ence sequence. On the other hand, the assembly step 
requires as much clean data as possible and removal 
of any amount of contaminants is required. Also, it 
should be noticed that nearly 1% of the dataset con-
sists of rRNA, which is not severe, but it surely influ-
ences the shape of GC content graph.

Presence of polyA/T tails can easily be checked 
by using simple grep command. In this dataset, 
around 7% of sequences have some form of polyad-
enilation. When the reads are short, the tails can be 
sequenced through and that causes the occurrence 
of other nucleotides after polyA/T tail. But, this is 
not a problem, because many read mappers and de 
novo assemblers perform well with polyadenilation, 
so it is not necessary to remove it from the dataset 
in any case.

As it is shown in Fig. 5 and Fig. 8, there is no sig-
nificant abundance of adapters. Nevertheless, all 
adapters should be removed from the dataset, inde-
pendently of the choice of the following steps. 

For quality trimming, to remove adapters and to 
discard reads shorter than 25bp (which can arise af-
ter quality trimming and adapter removal), we used 
Trimmomatic v0.36 because it is easy-to-use, fast, 
lightweight window-based QC preprocessing tool, 
specially designed for Illumina data. To remove PhiX 
and vector sequence contamination we used read 
mapping with TopHat v2.1.1 [21]. 

Figure 8. Level of contamination using Fastq Screen
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Mapping
In order to compare different approaches and 

their benefit to the results of mapping step, we chose 
widely used read mapper Tophat2 and compared its 
performance when using default parameters, as is 
done in many studies, with its performance when us-
ing chosen set of parameters that contribute to the 
higher accuracy and confidence of results. As a ref-
erence genome we used GRCh38.p11 with appropri-
ate GFF files. For comparison we used statistics from 
Tophat2 (Table 1a) taking into account not just read 
mapping rates but also the number of useful sequenc-
es. Additionally, we used Qualimap v.2.2.1 to count 
the number of reads mapping that belong to exonic 
(90.53%), intronic (7.61%) and intergenic (1.87%) 
regions as well as to determine duplication rates 
(29.09% for raw data and lenient approaches and 
28.71% for stringent approaches) and uniformity of 
coverage through 5’ and 3’ bias (5’ bias is 0.28, 3’ bias 
is 0.56 and ratio between 5’ and 3’ bias is 0.84).

Similar studies, taking into account only the qual-
ity trimming, showed that mapping rate increases 
with the stringency of quality trimming [14], while 
the absolute number of aligned reads decreases 
[22]. We can state the similar - QC preprocessing ap-
proaches that include lenient quality trimming are 
beneficial in absolute number of aligned reads and 
in that way they contribute to overall amount of us-
able information in final dataset, but only one ap-
proach, CAQ5, provide the increase in mapping rates 
as well. The reason for this is the presence of 73583 
contaminant sequences in AQ5 dataset, which in-
creases the number of sequences in the dataset, but 
not the number of mapped sequences. On the other 

hand, the absolute number of multi aligned reads 
in a lenient QC preprocessing approach is also in-
creased when compared to a stringent method, but 
the overall percentage is lower in lenient methods.

When we conducted a similar analysis with 
Tophat2, only this time we used setting of additional 
parameters as more appropriate for the nature of 
the set and the sequenced data themselves, we ob-
tained the higher mapping rate for all approaches, 
but the conclusion was the same. Since we expected 
a variability in the dataset, we increased the num-
ber of mismatches (-N 4) and number of mutations 
expressed through edit distance metric (--read-edit-
dist 5). Also, we demanded realignment of reads with 
edit distance higher than 2 (--read-realign-edit-dist 
2) and no multihits (-g 1). Results are given in Table 
1b. Again, we used Qualimap to determine quality of 
mapping (duplication rate: 27.35%-27.73%; map-
ping to specific regions: exonic - 91.16%, intronic - 
6.96%, intergenic - 1.88%; 5’ bias: 0.16, 3’ bias: 0.61, 
5’-3’ bias: 0.3) and it also revealed the overall better 
quality of mapping when appropriate parameters in 
Tophat 2 were used.

Figure 9. Proposed workflow for reads mapping task

Appropriate parameters contributed to the im-
provement of results in all approaches, with CAQ5 
giving the best result. The proposed workflow is 
given in Fig. 9.

a) mapping performed with default parameters 

Data R Q5 Q25 AQ5 AQ25 CAQ5 CAQ25

No. of mapped seq 9049533 9051992 8913954 9051962 8913946 9051626 8913640

Mapping rate 98.5% 98.5% 98.7% 98.5% 98.7%  99.3% 99.5%

% of multi aligned 19.8% 19.8% 19.9% 19.8% 19.9% 19.8% 19.9%

b) mapping performed with parameters –g 1 –N 4 --read-edit-dist 5 --read-realign-edit-dist 2

No. of mapped seq 9072621 9075046 8929607 9075035 8929538 9074742 8929260

Mapping rate 98.7% 98.8% 98.9% 98.8% 98.9% 99.6% 99.6%

Table 1. Comparison of Tophat2 mapping results. R- raw data, C- removed contamination, A – removed adapters, Q5 – trimmed reads 
using sliding window with quality threshold set to 5, Q25 – trimmed reads using sliding window with quality threshold set to 25. 

Reads shorter than 25bp were discarded.
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De novo assembly
An accurate assembly requires a high qual-

ity clean data, which can be provided in one of two 
ways: by using stringent QC preprocessing approach 
on cleaned data (CAQ25) or by using lenient ap-
proach on clean data (CAQ5) combined with error 
correction (EC) performed using Rcorector (a tool 
specially designed for this task in Illumina RNAseq 
data), with maximum number of correction set to 5. 
Additional steps in QC preprocessing, like elimina-
tion of Illumina specific bias, can contribute to the 
quality of assembly. According to Fig. 1b we deter-
mined that the first 11 bases are affected with Il-
lumina bias so we used Trimmomatic to remove 
them from EC and CAQ25 datasets. In that way we 
formed two additional datasets, ECC and CAQ25C, in 
order to test the impact of clipping of biased bases 
on de novo assembly. All five datasets (R, CAQ25, 
EC, CAQ25c and ECc) were assembled using Trin-
ity v2.4.0 [23] with minimal contig length set to 30 
(because initial reads are short, ranging from 25 to 
50bp). We didn’t change the values of other default 
parameters because in Trinity they are set to give 
the best results for standard RNAseq data. For the 
evaluation of the assembly we mutually compared 
values of several standard metrics: N50, average 
contig length (both measured using in house perl 
script), reads mapping rate to transcriptome, tran-
scriptome mapping rate to reference transcriptome 
and the number of proteins that matched the assem-
bled transcriptome more than 80% (Table 2). All 
read mappings to transcriptome were conducted by 
using bowtie2 [24] with parameter --local, while the 
number of proteins was obtained by using BLASTX 
[25] and by the utility perl script provided within 
Trinity installation.

A desirable resulting assembly has the greater 
assembly length and the smaller number of contigs. 
That is why we observed the ratio between these 
two values in different approaches, with an aim to 
obtain the larger number represented as average 
contig length. Because contigs do not have uniform 
length, for mapping of reads to assembly and for 
mapping of assembly to reference transcriptome 
we observed only mapping rates and not the num-
ber of mapped contigs. Datasets used in stringent 
approaches included the clipping of the 10 bases 
from the 5’ end, which made the sequences shorter 
and led to significant loss of information. This was 
reflected in the results by larger number of contigs 
and smaller assembly length, which is why the as-
sembly had low average contig length. Another 
affected metric is the number of proteins which 
matched transcriptome in high percentage, used to 
reflect the number of almost full transcripts, show-
ing that, although the mapping rate to reference 
transcriptome was high, obtained transcripts were 
not complete. On the other hand, it was beneficial 
for the mapping task, which was expected because 
it is easier to fit in the shorter than longer sequence 
in the reference sequence, but the longer ones are 
more reliable. Aforementioned is even more notice-
able in the used dataset because the initial dataset 
consisted of very short sequences (35-50 bp) and 
clipping made the great amount of extremely short 
sequences which were not suited for further analy-
sis. Methods in the lenient group gave better results, 
with similar results in most of the metrics, but with 
EC approach giving the highest number of >80% 
complete transcripts. According to the aforemen-
tioned, we recommend using EC approach. 

Data R CAQ25 EC CAQ25c ECc

N50 69183 69101  68014 120637 120571

average contig length 100.19 99.56  100.81 63.83 64.35

% of reads mapped to transcriptome 92.39 92.23  92.38 90.24 90.50

% of transcriptome mapped to reference transcriptome 86.49 86.71  86.31 90.21 89.95

No. of proteins matched the transcriptome >80% 2784 2793  2939 922 979

Table 2. Comparison of Trinity results for differently preprocessed data with parameter --min_contig_length set to 30. R – raw data, 
C – removed contamination, A – removed adapters, Q5 – trimmed reads using sliding window with quality threshold set to 5, Q25 

– trimmed data using sliding window with quality threshold set to 25, EC – CAQ5 with mostly 5 error corrected bases, c – clipped 10 
bases from 5’ end. Reads shorter than 25bp were discarded.
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Conclusion

Specifics of RNA sequencing and RNAseq data-
sets have to be taken into account when choosing 
the best approach in the evaluation, preprocessing 
and analysis steps. Widely used software for qual-
ity control FastQC is not adjusted to RNAseq data 
which is why an adequate interpretation of obtained 
results is necessary, but the ultimate choice of ap-
propriate QC preprocessing steps depends on the 
following step of downstream analysis - mapping or 
de novo assembling. Generally, all levels of QC pre-
processing can be grouped into three approaches: 
naive approach which presumes that raw data is a 
high quality data, lenient approach which preserves 
more information, and stringent approach which 
provides cleanest dataset. Evaluation of approaches 
demands using significant and reliable metrics like 
mapping rate, number of mapped sequences and 
multi-mapped reads ratio for mapping task and 
N50, average contig length, percentage of assembly 
mapped to reference transcriptome, ratio of unique 
reads mapped to transcriptome and number of pro-
teins matched the transcriptome in more than 80% 
for assembly task. For the comparison of QC results 
between different approaches and as a use case 
for studying the influence of QC on further analy-
ses steps, we used publicly available RNAseq raw 
data from well researched and reference resources 
rich genome to provide reliable results. Our results 
showed that when downstream analysis included 
mapping, lenient methods with adapter removal 
included gave the best results. Moreover, results re-
vealed that an influence of parameter selection on 
the mapping task exists, which is why parameters 
should be selected according to the nature and pur-
pose of the NGS experiment. For the assembling 
task, the best results were obtained by using a le-
nient approach with error correction. 
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