
JITA 1(2011) 2:136-143 OKANOVIĆ D., VIDAKOVIĆ M., KONJOVIĆ Z.:

MONITORING OF JEE APPLICATIONS AND
PERFORMANCE PREDICTION

Dušan Okanović, Milan Vidaković, Zora Konjović
{oki, minja, ftn_zora}@uns.ac.rs

Faculty of Technical Sciences, University of Novi Sad

Case study

UDC 005.334:004.4

Abstract: This paper presents one solution for continuous monitoring of JEE application. In order to reduce overhead,
Kieker monitoring framework was used. This paper presents the architecture and basic functionality of the Kieker framework
and how it can be extended for adaptive monitoring of JEE applications. Collected data was used for analysis of application
performance. In order to predict application performance, regression analysis was employed.

Key words: continuous monitoring, Java, JMX, regression analysis

INTRODUCTION

Degradation of software performance and qual-
ity of service over time is well known phenomenon
[21]. Also, software testing, debugging and profi ling
in development phase are not able to detect every-
thing that can happen after the software is deployed.
New, previously unknown, errors can show up in this
part of software lifecycle. It is necessary to monitor
software over time in order to determine the soft-
ware service levels i.e. how the software compares
against service level agreements.

Although software developers usually use debug-
gers and profi lers, there is often not enough time to
properly test the software. Another problem with
using profi lers and debuggers is that they often in-
duce an overhead, something the end user may fi nd
unacceptable. In order to determine how software
behaves over time, in the real world, it is necessary
to perform continuous monitoring of the soft-
ware. The data provided by the continuous monitor-
ing of software under production workload is much
more valuable then the data obtained in the testing
phase.

Monitoring system shares resources with the
monitored software, causing the performance over-
head. In order to control the overhead and the
amount of data generated by the monitoring system,
we can employ adaptive techniques. These tech-
niques allow changing of monitoring parameters
during monitoring process.

Obtained results can be used for visualization and
performance analysis of software. Also, based on
these results, we can predict how an application re-
sponse time will change or when will some memory
leak cause problem.

The main contribution of this paper is that it
presents the use of open-source Kieker framework
[20] with the extension for continuous monitoring
of JEE applications. We created additional compo-
nents that allow changing of monitoring parameters
during monitoring process. By doing this, we can cre-
ate fl exible monitoring scenarios. As a case study, we
present monitoring of a JEE application deployed
on a cluster of servers. Results of this monitoring
scenario are then used for application performance
prediction.

136 Journal of Information Technology and Applications www.jita-au.com

DOI: 10.7251/JIT1102136O

MONITORING OF JEE APPLICATIONS AND PERFORMANCE PREDICTION JITA 1(2011) 2:136-143

In our earlier papers we presented some parts of
this system. In [16] we proposed system’s architec-
ture, and in [15] we presented how this system can be
applied for monitoring of applications deployed on
the JBoss application server. Here, we show further
improvements to the system and how the results we
obtained can be used for performance analysis and
prediction.

The remainder of this paper is structured as follows.
Section 2 provides overview of related work in the fi eld
of performance monitoring and prediction. Section 3
presents architecture of our system, while section 4
shows its application to monitoring of one JEE test
application. Performance prediction using linear regres-
sion is shown in section 5. Section 6 provides conclu-
sion to this paper and guidelines for future work.

RELATED WORK

Study presented in [19] indicates that perfor-
mance is considered critical, but developers usually
fail to use monitoring tools. In practice, application
level monitoring tools, and especially open-source
tools, are rarely used. The reasons for this are usually
time constraints (during development), and resource
constraints (e.g. performance degradation) during
application use. Developers usually limit themselves
to profi lers and debuggers, during development.

Apart from Kieker, there are several other sys-
tems that are used for monitoring of distributed ap-
plications.

JBoss Profi ler [9] is a tool based on JVMTI and
JVMPI APIs. It is used to monitor applications de-
ployed on JBoss application server [8]. The use of
JVMTI/JVMPI APIs gives very precise results and
low overhead. However, in order to change this tool
or extend it, the knowledge of C/C# is required.

COMPAS JEEM [17] inserts software probes
during the application startup. The probes are in-
serted into each of the layers (EJB, servlet…). The
advantage of this approach is that there is no need
for the application source code changes. However, a
drawback of this approach is the fact that different
probes must be defi ned for each application layer.

The system shown in [2] is used for reverse engi-
neering of UML sequence diagrams from JEE ap-
plications. The instrumentation is performed using
AspectJ, as is in Kieker. The system is limited to dia-
gram generation and it is not suitable for monitoring.
Also, the system is not able to monitor web-services,
only RMI.

DynaTrace [2] and JXInsight [10] are examples of
commercially available application monitoring tools.
JXInsight is intended for JEE, while DynaTrace can
be used for monitoring of .NET and Java applica-
tions. DynaTrace performs monitoring across mul-
tiple application tiers using PurePath technology.
JXInsight is able to perform automatic analysis and
detection of various problem types within applica-
tions.

One of the open-source tools that is often in use
is Nagios [12], is not used on an application level, but
to monitor infrastructure.

This overview shows the lack of tools (especially
non-commercial open-source tools) that allow con-
tinuous and reconfi gurable monitoring of JEE ap-
plications with low overhead. Kieker framework in
combination with JMX [20] can be used for monitor-
ing of JEE applications. It uses AspectJ [1] – load-
time weaving confi guration – for instrumentation
and separation of monitoring code from application
code. JMX, which is in the core of JEE application
server infrastructure, can be used for controlling of
the monitoring process.

Performance prediction of software is a part of
capacity management process [18]. Developers usu-
ally use performance monitoring to obtain data for
trend analysis. Prediction is also used in proactive
management of software aging.

In [22] authors present their fi ndings in the area
of software aging and propose a proactive technique
called “software rejuvenation”. The idea is to occa-
sionally terminate the application and clean its in-
ternal state of accumulated errors. This should be
planned and initiated based on measurement, analy-
sis and prediction.

December 2011 Journal of Information Technology and Applications 137

JITA 1(2011) 2:136-143 OKANOVIĆ D., VIDAKOVIĆ M., KONJOVIĆ Z.:

Nudd et al. [13] provide a methodology for de-
tailed performance prediction through software de-
sign and implementation cycles. It has relatively fast
analysis time and can be used in runtime to assist in
dynamically changing systems.

KIEKER FRAMEWORK

Kieker is a framework for continuous monitoring
of all types of Java applications. It consists of:

• Kieker.Monitoring – component responsible
for data collection and

• Kieker.Analysis – component that performs vi-
sualization of the data

Architecture of the Kieker framework is shown in fi g. 1.

FIG. 1. KIEKER FRAMEWORK COMPONENT DIAGRAM

Kieker. Monitoring component is executed on the
same computer where monitored application is being
run. This component collects data on the execution of
monitored applications. Monitoring Probe is a software
probe that is inserted into the observed application and
takes various measurements. Monitoring Log Writer
stores collected data, in the form of MonitoringRe-
cords, into the Monitoring Log. Monitoring Controller
controls the work of this part of the framework.

The data in the Monitoring Log is analyzed by
Kieker.Analysis component. Monitoring Log Reader
reads records from Monitoring Log and forwards
them to Analysis Plugin. Analysis Plugin analyzes
and visualizes gathered data. Control of all compo-
nents in this part of the Kieker framework is per-
formed by Analysis Controller component.

Monitoring Log can be anything (e.g. fi le, data-
base, JMS queue) because the framework does not
depend on the type of storage.

Both components of the Kieker framework work
completely independently. This approach allows a
single computer to run monitored software, to store
monitoring data in a fi le system or database on an-
other computer and to perform data visualization
and analysis on a third computer.

Software Instrumentation

Software instrumentation in the Kieker frame-
work can be performed using aspect-oriented pro-
gramming or by inserting pieces of code, which take
measurements, create monitoring records and store
these records using Kieker.Monitoring components.
The drawback of the second approach is that it pol-
lutes program code with the code that is not a part
of the application. Use of aspect oriented program-
ming is more appropriate way to perform program

instrumentation. Developers can separate program
logic from monitoring logic (separation of con-
cerns). Instrumentation consists of writing aspect
classes and weaving them with application classes.
These aspects intercept execution of program logic
at points defi ned using join points and add additional
behavior using advices.

Among different AOP tools for the Java frame-
work, Kieker framework uses AspectJ.

There are several ways to perform program in-
strumentation using AOP. Firstly, one can choose
whether to instrument program code – i.e. weave
aspects with application classes – during application
development (compile-time weaving) or when class-
es are loaded (load-time weaving). Compile-time
weaving is performed using AspetJ’s ajc compiler:
compiler weaves application code with aspects and
generates new classes.

138 Journal of Information Technology and Applications www.jita-au.com

MONITORING OF JEE APPLICATIONS AND PERFORMANCE PREDICTION JITA 1(2011) 2:136-143

The other way to instrument the application is load
time weaving. In this case, weaving of the precompiled
aspects with application classes is performed during
loading of classes. The disadvantage of this approach
is that launching of applications takes a bit longer
than in case of compile time weaving, but there is no
need for source code and recompilation of the appli-
cation. Load-time weaving confi guration is performed
with the aop.xml confi guration fi le. In the aop.xml fi le
we defi ne aspects and parts of the software (classes,
packages) that are to be woven together.

Developer can chose to monitor every method in
every class or only designated ones. The usual way to
designate methods and classes are Java annotations.
OperationExecutionMonitoringProbe
annotation and several different aspects are distrib-
uted with the Kieker framework and allow creation
of different monitoring scenarios.

Regardless of the chosen scenario (compile or
load time weaving, monitoring of all or only an-
notated methods), the aspect intercepts executed
method, takes necessary measurements, lets the
method execute, creates MonitoringRecord and, us-
ing Monitoring Controller, stores data into Monitor-
ingLog. Within one application there can be multiple
annotations and aspects, and they can perform vari-
ous measurements.

Kieker Framework Extension

The Kieker framework was extended by imple-
menting new MonitoringLogWriter and several new
components. We call this new system the DProf.

Architecture of this part of the system is shown
in fi g. 2.

A new MonitoringLogWriter – DProfWriter stores
all records into a special buffer – ResultBuffer. The
ResultBuffer is implemented as a JMX MBean. This
allows the buffer to be controlled programmatically
or from any JMX console. The buffer sends monitor-
ing records to a service running on a remote server
– RecordReceiver. Records can be sent periodically in
bulks or as soon as they arrive into the buffer. This
remote service stores records into the database for
further analysis. Essentially, the combination of the
buffer, the service and database assumes the role of
Kieker’s Monitoring Log.

Analyzer component analyzes gathered data and
sends new monitoring parameters to DProfManager.
DProfManager controls ResultBuffer and Aspect-
Controller. The confi guration of monitoring system
is performed through the aop.xml. AspectController
performs monitoring system reconfi guration by add-
ing and removing clauses from aop.xml.

DProfWriter

RecordReceiver

Database server

ResultBufferMBean

RecordReceiverService

DBMS

Application

MonitoringProbe aop.xml

MonitoringController

AspectController

DProfManager

AspectControllerMBean

ResultBuffer

Analyzer

DProfManagerService

Timer Service

IMonitoringLogWriter

FIG. 2. EXTENSIONS FOR KIEKER FRAMEWORK

December 2011 Journal of Information Technology and Applications 139

JITA 1(2011) 2:136-143 OKANOVIĆ D., VIDAKOVIĆ M., KONJOVIĆ Z.:

The system can be confi gured to:
• Record normal results – this is usually used to

determine normal values of monitored param-
eters.

• Find which component is not in accordance
with the expected values. In this case, the sys-
tem monitors only top-level (interface) meth-
ods of components. If there is discrepancy
with the expected values, the system turns on
monitoring in the next level. The last method
that has values different than expected is identi-
fi ed as the source of the problem.

• Find which component consumes selected re-
source the most. The process is similar to the
previous. The difference is that there are no
expected values. We only try to fi nd on which
level, which method consumes the most of the
designated resource.

Another extension of the framework is addition
of the new type of Monitoring Record – DProfEx-
ecutionRecord. It extends the standard Kiek-
er’s OperationExecutionRecord by adding
new attributes. Attribute recordedOn holds the
IP address of the computer where the record was
created. Attribute recordedAt holds the time in
milliseconds when the record was created. Because
the original OperationExecutionRecord
holds only information about response time, we
have added the attribute otherData. It holds per-
formance information of any other parameter, such
as memory, CPU, network.

OperationExecutionRecord class is
shown in Fig 3.

CASE STUDY – FINDING PERFORMANCE BOTTLENECKS

The use of the Kieker framework for monitoring
of distributed JEE applications will be demonstrated
on the software confi guration management (SCM)
application described in [14] deployed on a JBoss
5.1.0 server. This is a JEE application responsible
for tracking of applications and application versions.

The application is implemented using EJB tech-
nology. Entity EJBs [4] are used as O/R mapping
layer. They are accessed through the stateless session
EJB (SLSB), modeled on the façade design pattern
[5]. SLSBs are annotated to work as JAX-WS web
services as well.

Application client is the Java Swing [7] application
which uses web services to access the application.

Listing 1. represents a part of the Organniza-
tionFacade class. createOrganization
method invokes checkOrgName method, retrieves
object of City class by its id and creates a new entity
EJB. All of these methods are annotated with @Op-
erationExecutionMonitoringProbe.

Listing 1. Stateless session EJB Organiza-
tionFacade class

@Stateless
public class OrgannizationFacade
 implements OrganizationFa-
cadeService {
 // ...
 @OperationExecutionMonitor-
ingProbe
 public Organization
createOrganization(String org-
Name,
 String address, String
email, long cityId) {
 checkOrgName(orgName);
 City c = entityManager.
fi nd(City.class, cityId);
 Organization org =
 new Organization(orgName,
address, email, c);
 entityManager.persist(org);

DProfExecutionRecord

+
+
-

otherData
recordedAt
recordedOn

: String
: long
: InetAddress

OperationExecutionRecord
(kieker::common::record)

+
+
+
+
+
+
+
+
+
+
+
+

experimentId
hostName
className
operationName
sessionId
traceId
tin
tout
eoi
ess
isEntryPoint
retVal

: int
: String
: String
: String
: String
: long
: long
: long
: int
: int
: boolean
: Object

FIG. 3. OPERATIONEXECUTIONRECORD CLASS

140 Journal of Information Technology and Applications www.jita-au.com

MONITORING OF JEE APPLICATIONS AND PERFORMANCE PREDICTION JITA 1(2011) 2:136-143

 return org; }
 @OperationExecutionMonitor-
ingProbe
 public void checkOrgName() {
 // zip code check
 // ...
 }
}

The testing will be conducted by repeatedly invok-
ing OrgannizationFacade. createOrga-
nization (...) method. These invocations are
supposed to generate data which will be used for pro-
gram performance analysis.

Initially, the system is confi gured for monitoring
of methods in the top level – createOrgani-
zation method in this case. The system is confi g-
ured to analyze monitoring data every two hours and
change monitoring parameters, if needed.

In the fi rst pass, results show that createOr-
ganization method takes to long to execute.
The monitoring system then included second level
of methods into monitoring confi guration. After
two hours, the results were analyzed again. They have
shown that average execution time of the check-
OrgName() method is above expected. This meth-
od required refactoring, in order to meet demands.

Fig. 4. shows how response time changes when
monitoring of another level is added to monitoring
confi guration.

FIG. 4. COMPARISON OF RESPONSE TIME WHEN ONE OR TWO LEVELS OF
METHODS ARE MONITORED

We can see that the response time increases if an-
other level of methods is added to monitoring con-

fi guration. By using adaptive monitoring technique,
our system behaves as human tester would. It moni-
tors only one level of methods, and turns on moni-
toring of lower level only if a problem is detected.
This way, the total overhead is reduced.

CASE STUDY – RESPONSE TIME PREDICTION

We have deployed our test application, from pre-
vious case, on a cluster of four servers and generated
different workloads. We wanted to see what happens
with the response time when we increase workload
and number of servers in cluster.

Results are as expected: the response time in-
creases with the number of clients and decreases
with the number of servers.

Obtained results are shown in Fig. 5.

FIG. 5. AVERAGE RESPONSE TIME FOR DIFFERENT SERVER
CONFIGURATIONS AND WORKLOADS

In order to predict how response time would
change if the number of clients is increased or if we
add another server, we employed the regression analy-
sis. A model, in which we have two independent vari-
ables – the number of servers and the number of cli-
ents, and one dependent – response time, was created.

The analysis of this model shows that these two
independent variables explain 83.4% of response

December 2011 Journal of Information Technology and Applications 141

JITA 1(2011) 2:136-143 OKANOVIĆ D., VIDAKOVIĆ M., KONJOVIĆ Z.:

time variance. The rest of the average response time
is infl uenced by some external factors. In this case,
these can be hardware glitches, network traffi c and
cluster load balancer infl uence.

Both of the predictors are signifi cant (the p value
is less then 0.01) and the model provides us with co-
effi cients for prediction shown in the table 1.

TABLE. 1. REGRESSION MODEL COEFFICIENTS

The following equation was derived from the
table 1.:

(is estimated response time, is
number of users and is number of servers).
By using this equation, we can estimate (with the sat-
isfying precision) how response time will change (with
the respect to the calculated errors for every coeffi -
cient) if we vary the number of users and servers.

Regression results show that we can use this
model for performance prediction with satisfactory
precision.

CONCLUSION

This paper presents the use of the DProf system
for continuous monitoring of distributed Java appli-

cations and the use of monitoring data for perfor-
mance prediction.

It describes the Kieker framework, its architecture
and confi guration. The Kieker was used for monitor-
ing of one SCM application which was implemented
using EJB and web-services technologies. Additional
components, implemented using JMX technology,
allow for development of the reconfi gurable appli-

cation monitoring system. During the monitoring,
it is possible to change monitoring parameters. The
system can also be confi gured to change monitoring
parameters automatically in order to provide more
precise data or to reduce performance overhead.

We have applied the regression analysis in order
to estimate application performance. The result was
the model which allows us to predict what will hap-
pen to application performance if the number of cli-
ents changes or if we change the number of servers
the application is deployed on.

Future work will focus on further improvements
of monitoring system. Also we will try to apply oth-
er machine learning techniques in order to improve
performance prediction model.

Coeffi cients Standardized
Coeffi cients t Sig.

B Std. Error Beta

Intercept 3.906 0.000

Number of users 4562536.524 0.820 13.636 0.000

Number of servers -0.402 -6.682 0.000

142 Journal of Information Technology and Applications www.jita-au.com

MONITORING OF JEE APPLICATIONS AND PERFORMANCE PREDICTION JITA 1(2011) 2:136-143

REFERENCES

[1] AspectJ , h ttp://www.eclipse.org/aspectj/
[2] Briand LC et al. (2006) Toward the reverse engineering of UML sequence diagrams for distributed Java software. IEEE

Transactions on Software Engineering, 32(9), 642–663.
[3] Dynatrace, http://www.dynatrace.com/en/
[4] EJB 3.0, http://java.sun.com/products/ejb/
[5] Gamma E et al. (1994) Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Proffesional,

Boston, USA.
[6] Grottke M et al. (2006) Analysis of Software Aging in a Web Server. IEEE Transactions on Reliability, 55(3), 411-420.
[7] Java Sw ing, http://java.sun.com/javase/6/docs/technotes/guides/swing
[8] JBoss Application Server, http://www.jboss.org/jbossas
[9] JBoss Profi ler, www.jboss.org/jbossprofi ler
[10] JXInsig ht, h ttp://www.jinspired.com/products/jxinsight/
[11] Kiczales G. et al. (1997) Aspect-Oriented Programming. In Proceedings of ECOOP, pp. 313, Vienna, Austria
[12] Nagios, w ww.nagios.com
[13] Nudd GR et al. (2000) Pace-A Toolset for the Performance Prediction of Parallel and Distributed Systems. International

Journal of High Performance Computing Applications, 14(3), 228-251.
[14] Okanović D and Vidaković M (2008) One Implementation of the System for Application Version Tracking and Auto-

matic Updating. In Proceedings of the IASTED International Conference on Software Engineering 2008, pp 62–67,
Innsbruck, Austria

[15] Okanović D a nd Vidaković M (2011) Performance Profi ling of Java Enterprise Applications. In Proceedings of the Inter-
national Conference on Internet Society Technology and Management, on CD, Kopaonik, Serbia,.

[16] Okanović D et al (2011) Towards Adaptive Monitoring of Java EE Applications. In Proceedings of the 5th International
Conference on Information Technology, on CD, Amman, Jordan

[17] Parsons T et al. (2006) Non-Intrusive End-to-End Runtime Path Tracing for J2EE Systems. IEEE Proceedings – Software,
153(4), 149–161.

[18] Rudd C and Lloyd V (2007) Service Design. The Stationery Offi ce, UK
[19] Snatzke RG (2008) Performance survey 2008. (available at http://www.codecentric.de/export/sites/www/resources/

pdf/performance-survey-2008-web.pdf)
[20] Sullins BG and Whipple MB (2002) JMX in Action. Manning Publications, USA
[21] van Hoorn A et al. (2009) Continuous Monitoring of Software Services: Design and Application of the Kieker Frame-

work. Technical report, Institut für Informatik, Oldenburg, 2009.
[22] Yilmaz C et al. (2005) Main Effects Screening: A Distributed Continuous Quality Assurance Process For Monitoring Per-

formance Degradation in Evolving Software Systems. In Proceedings of the 27th International Conference on Software
Engineering, pp 293-302, St. Louis, USA

Submitted: October 25, 2011
Accepted: December 31, 2011

December 2011 Journal of Information Technology and Applications 143

