
JITA 2(2012) 1:14-21 L. Faynshteyn, V. B. Mišić, J. Mišić:

ANALYZING THE COST AND BENEFIT OF PAIR
PROGRAMMING REVISITED

Lev Faynshteyn, Vojislav B. Mišić, Jelena Mišić
Ryerson University, Toronto, Canada

Contribution to the State of the Art

DOI: 10.7251/JIT1201014F UDC: 502.171:551.782

Abstract: Pair programming has received a lot of attention from both industry and academia, but most paper focus on its
technical aspects, while its business value has received much less attention. In this paper, we focus on the business aspects
of pair programming, by using a number of software development related met rics, such as pair speed advantage, module
breakdown structure of the software and project value discount rate, and augmenting them by taking into account the cost of
change after the initial product release and inherent non-linearity of the discount rate curves. The proposed model allows for
a more realistic estimation of the fi nal project value, and the results of System Dynamics simulations demonstrate some useful
insights for software development management.

Keywords: Pair Programming, Extreme Programming (XP), System Dynamics, Waterfall, Cost of Change

INTRODUCTION

Pair Programming (PP) is one of the key para-
digms in Extreme Programming (XP). It stipulates
that any coding task should always be performed by
a pair of programmers working at the same computer
using only one set of input devices. Th is approach has
been demonstrated [7][11][21][22] to provide tan-
gible benefi ts in such areas as design and code quality
(fewer bugs per line of code), problem solving (two
heads are better than one) and general satisfaction
with a job well done (people like to share responsi-
bility, which in turn makes them feel more confi dent
and comfortable). At the same time, benefi ts related
to the improved productivity have not been fully
corroborated [10], and experience has shown that
to leverage the full potential of Pair Programming,
that is to keep the original level of task parallelism
in any given company while taking advantage of all
the benefi ts, the number of developers has to be dou-
bled, which in most cases also means doubling the
personnel costs. Naturally the question arises when
and under what conditions the additional expenses

are justifi able. To answer this question Padberg and
Müller created a mathematical model [18] which is
based on three categories of metrics used as input to
the model:
• Process Metrics: productivity of a single develop-

er, pair speed advantage (PSA), defect density of
code, pair defect advantage (PDA) and defect re-
moval time.

• Product Metrics: product size and module break-
down structure of the software.

• Project Context Metrics: project value discount
rate, initial asset value, number of single devel-
opers, number of programmer pairs, developer
and project leader salaries, monthly working
hours.
By analyzing these metrics and studying their

relationships they came up with a mathematical ex-
pression for Net Present Value (NPV) of a software
project, which in a nutshell repre sents the initial
monetary value of a project (AssetValue) discounted
at a certain rate (DiscountRate) minus the develop-
ment expenses (DevCost) throughout the entire du-
ration of the development process (DevTime):

14 Journal of Information Technology and Applications www.jita-au.com

Analyzing the Cost and Benefit of Pair Programming Revisited JITA 2(2012) 1:14-21

 AssetValue
NPV = DevCost
 (1+DiscountRate)DevTime

By adjusting the model’s input parameters (most-
ly PSA, PDA and MP) they collected results rep-
resenting various confi gurations for both projects
developed under traditional software development
practices (e.g. a Waterfall process) and projects that
utilized Pair Programming. Th eir conclusion was
that for projects where PSA is moderate and MP is
not very high, conventional development methods
will produce better fi nancial returns. In fact, even in
cases where discount rate fi gures are very high (e.g.
75% per year), PSA is large (such as 1.8 times of a
single developer productivity) and PDA is quite sig-
nifi cant (15% or more less bugs in the code), Pair
Programming would just break even with conven-
tional practices. However, successful real life appli-
cations [5][11][12][20] of XP practices off er ample
evidence that Pair Programming does work and is
certainly economically feasible. Naturally a question
arises whether the original model is missing on some
aspects of XP in general and Pair Programming in
particular that might change the balance in favor of
the latter. Th e following sections will try to address
this question.

MOTIVATION

According to the original model, Pair Program-
ming will be economically feasible only in extreme
cases, where time to market is absolutely critical (i.e.
project value discount rate is extraordinarily high).
However this, as the examples in the previous section
show, is often not true and XP, and Pair Program-
ming as an inherent part of it, are used for projects
of all scales and time durations, with many show-
ing positive results in terms of both productivity and
profi tability. While looking for an explanation of this
discrepancy we came to realize two things:

First of all, discount rate in the original paper is
always a constant value. Th is seems unrealistic since
discount rate itself is subject to many factors. For in-
stance it would be reasonable to assume that for a
brand new product not only would it be very high,
but after some point it would accelerate at a much
higher rate than initially due to the fact that mar-

ket rivals would have released or would be drawing
ever so closer to releasing a competing product. At
the same time for a well established product the ac-
celeration would be very slow at fi rst since the es-
tablished user base would be unwilling to upgrade
too often and conversely they would be willing to
wait for quite a long time for an update for a product
that has already proved itself. However after a certain
moment in time it would also start to accelerate at
a faster rate, since going beyond a certain point in
time without a new version would test customers’ pa-
tience. Th ese ideas are in fact confi rmed by the real
world data [14] and thus this change will be a good
candidate for an improved model.

A second and probably more important observa-
tion was that the original model did not consider the
cost of change (CoC) of the code after the initial re-
lease date. In 1981 Barry W. Boehm did a study [3]
of the cost of change ratio between implementing a
feature or fi xing a bug in production vs. requirements
stage and found it to grow exponentially with time.
Even for projects of moderate size it could be very high
(up to 100 times and more). His much more recent
book [4] confi rms these numbers. Th is makes sense
for traditional approaches where the requirements and
features are for the most part determined once at the
beginning of a project and stay the same throughout
the whole development cycle until the software is re-
leased. Any new feature requests are being deferred
until after the release, thus making their implementa-
tion potentially very diffi cult and labor inten-sive.

On the other hand, in XP the development pro-
cess starts with only a general idea about how the fi nal
product will look like or function, and is constantly
refi ned by means of customer feedback. It thus al-
lows in a way to defer the cost of making big and
costly decisions early on and to have the best chance
that once these big decisions are made they would
be the right ones. Th is is the premise on which Kent
Beck in [2] based his argument that for XP the curve
of cost of change is way more shallow than for the
traditional methods, and the actual costs of changes
in production vs. requirements phase can be as low
as fi ve and would stay close to these low values for
extended periods of time (in fact this might be the
very reason why XP is economically feasible).

June 2012 Journal of Information Technology and Applications 15

JITA 2(2012) 1:14-21 L. Faynshteyn, V. B. Mišić, J. Mišić:

FIGURE 1. Cost of Change in cases of a Waterfall and an XP
development approaches (after[2])

Fig. 1 shows a qualitative comparison of the curve
of CoC for a hypothetical software project done us-
ing a traditional (e.g. Waterfall) and an agile (e.g.
XP) approach.

An example in [4] of a project (TRW CCPDS-R)
that employed an innovative hybrid approach to the
development process, in which both the traditional
and agile practices were employed, seems to confi rm
this supposition, as the design, implementation and
maintenance changes throughout the lifecycle of the
project remained at a very low level.

Considering all of the above it seems reason-
able that a new version of the model should include
a CoC metric since it seems quite probable that it
might signifi cantly aff ect the results of simulations.

To implement a modifi ed version of the model
a System Dynamics approach was chosen. System
Dynamics is a proven technique that allows fl exible
and effi cient exploration and analysis of the behavior
of complex systems over time by describing them in
terms of interconnected elements that continually in-
teract with each other and the outside world to form
a unifi ed whole [15]. Due to the inherent dynamic
nature of software development processes and their
often complex interrelations, Systems Dynamics has
been long recognized as a very potent approach to
modeling of the former, often resulting in exposure
of surprising non-linearities in models of even mod-
est dimensions.

RELATED WORK

To date, many areas of agile development prac-
tices have been analyzed in numerous publications,
spanning all the way from studies in the area of psy-
chology and pair compatibility [9] to more generic
evaluation of the eff ects of the learning phase in the
context of XP on productivity [17] to the attempts
to model the entire XP development process [18].
However, since the scope of this paper mainly deals
with the economic benefi ts of Pair Programming, we
will focus our attention on the most relevant publica-
tions.

In [19] Padberg and Müller extended their model
for NPV to include the eff ects of the learning phase
(inherent to the Pair Programming) on the fi nal
value of the project. Th eir results showed that due
to the fact that the learning phase typically incurs a
onetime cost and the learning process itself does not
take long, the overall eff ect of the former is typically
minimal and amounts only to a few percent of the
total project cost: the learning overhead did not ex-
ceed 10% even in cases with very high staff turnover.
Th us, the estimates and conclusions in the original
paper remained largely unchanged.

In [8] the authors propose a metrics-oriented eval-
uation model that allowed them to assess a chosen
development model based on the project’s predicted
NPV value. Th e proposed NPV formula takes into
account such variables as development time and cost,
asset value, operation cost, fl exibility value and prod-
uct risk. However, this model deals with the high-
level representation of the underlying development
process and as such does not refl ect the intricacies of
any particular approach (whether it be traditional or
agile method).

In [13] the attempt is made to test the validity
of the supposition that the cost of change curve in
case of the agile development practices is indeed
much fl atter than that of the traditional approaches.
Th e authors employ a System Dynamics approach
to build a fairly involved model in which the main
criterion of effi ciency is the number of requested vs.
the number of implemented user stories. However,
the results and conclusion sections are very scarce
and superfi cial and fail to elaborate on the actual out-

16 Journal of Information Technology and Applications www.jita-au.com

Analyzing the Cost and Benefit of Pair Programming Revisited JITA 2(2012) 1:14-21

come of the simulation runs, thus leaving the ques-
tion unanswered.

Various forums and software development web-
sites (e.g. [1][6]) have discussions related to the na-
ture of the cost of change and its eff ects on the devel-
opment costs in particular and feasibility of diff erent
project development strategies as a whole. However,
as of today, the opinions vary wildly and conclusions
seem to be based on mostly anecdotal evidence and
common sense. Th us, the authors of this paper un-
derstand that the proposed enchantments are merely
an educated guess and refl ect their subjective opinion
on the matter.

THE EXTENDED SYSTEM DYNAMICS MODEL

Th e implementation was done in GoldSim, a
simulation package by GoldSim Technology Group,
which is a quite powerful and feature rich Monte
Carlo [16] simulation suite. To account for both
traditional and agile approaches (later referred to
Waterfall and XP respectively) two separate models
were created. To keep the results of the simulations
consistent both models share the same set of input
metrics, which in their turn, to make results compa-
rable to the ones in the original paper, were kept the
same (see the original paper [18] for details and the
rationale behind selecting the particular values) and
are presented in Table 1.

Both models contain elements that correspond to
a defect generation process (defects are produced at
a defect density rate depending on the volume of the
written code at any given moment). Th ese bugs cause
additional workload for the developers (their approx-
imated number of LOC is added to the initial prod
uct size) and thus, the defect removal time metric of
the original model is implicitly expressed through a
dynamic feedback loop.

In addition, both models implement a concept of
a code backlog. Th e idea behind it is that as time goes
by customers will be asking to introduce new features
into the system that is currently being developed. In
case of a Waterfall process all of these features will be
delayed until after the initial release, thus creating a
code backlog, which basically consists of a sum of
all approximated numbers of LOC needed to imple-
ment all of the features at the time when they are
requested. Depending on a chosen market pressure
curve and a product release date, this aggregate num-
ber will be multiplied by the CoC value and the work
will continue, marking a new development period
with additional expenses for the company. In case of
Pair Programming the backlog will be much smaller
since user requirements will be, for the most part,
implemented and integrated into the system during
its development stage. Note that not all of the fea-

TABLE 1. Input metrics and their values (after [18]).

June 2012 Journal of Information Technology and Applications 17

JITA 2(2012) 1:14-21 L. Faynshteyn, V. B. Mišić, J. Mišić:

tures in the code backlog will be implemented (some
of them will be covered by other features, others will
be dropped, etc.). Th is fact is represented by another
input metric called Feature to Backlog Ratio. Table
2 lists the newly introduced metrics that are used in
the CoC related part of the model.

One more important diff erence between the new
and the original model lies in the fact that for the
new Pair Programming model a concept of refactor-
ing has also been implemented. Refactoring happens
whenever a new bug is reported, a new feature is
added or when the number of both bugs and new
features introduced into the system exceeds a certain
value [2] (this in XP circles is sometimes referred to
as “when the code start to smell”; in this particular
case the values are 5 for bugs and 10 for features).

Th e basic idea behind both models is the same:
the initial estimated size of the project gets chipped
away at a development rate that depends on the pro-
ductivity and team size. As the code is being gener-
ated, bugs start to appear according to the predefi ned
defect density and features are requested according to
the predefi ned random distribution. Th e weights of
the bugs and features (that is how many LOC each of
them will take to fi x/implement) are also randomly
determined according to separate random distribu-

tions. Th e resulting values are added to the total
pull of work (for XP features, for the most part, are
added right away, for Waterfall they go into the code
backlog). When the size of the project goes down to
zero (that is there is no more work to be done) for
the fi rst time, we reach a stage of the fi rst release. At
this point, a second part of the model activates that
determines how many LOC it would take to clear
up the code backlog considering the current value
of the CoC. Th e project size depository gets refi lled
with the newly calculated value for the LOC and the
work resumes in the same way as earlier, except that
new features are no longer accepted. Note that it is
also possible to run multiple realizations for each of
the models by specifying the number of Monte Carlo
stages. Th is allows us to see how such random input
variables as features and bugs aff ect the results of the
simulations.

RESULTS

Since the newly created Waterfall model is basi-
cally identical to the model in the original paper [18]
we can use it as a gauging device to see if the re-
sults produced by it are comparable to the reference
results in the original publication. Using the origi-
nal model values (see Table 1.) for a product with
16800 LOC, an asset value of 1000000 dollars and

TABLE 2. NEWLY INTRODUCED INPUT METRICS AND THEIR VALUES APPROACHES.

TABLE 3. RESULTS OF THE SIMULATIONS

18 Journal of Information Technology and Applications www.jita-au.com

Analyzing the Cost and Benefit of Pair Programming Revisited JITA 2(2012) 1:14-21

a constant discount rate of 10% per year, the refer-
ence NPV for conventional development process was
estimated at 723,463 dollars. Th e modifi ed Water-
fall model produced an average NPV value (for the
release date) of 710016 dollars, which considering
the random nature of the simulation is close enough.
Having established that reference point, let us now
see how diff erent discount rate, project size, PSA and
PDA values aff ect the results of the simulations.

To compare the results of the new model simula-
tions to the results presented in the original paper
[18] a number of runs (each consisting of 100 real-
izations) with diff erent input values were executed.
Th e results are given in Tables 3 (all of the parame-
ters, except the ones listed in the table, were kept the
same throughout all of the runs), where NPVWFR,
NPVWFB, NPVPPR, NPVPPB are NPV values for
Waterfall Release, Waterfall Backlog, Pair Program-
ming Release and Pair Programming Backlog mile-
stones respectively.

Th e fi rst batch of experiments was run at a con-
stant yearly discount rate of 10%. As can be seen

from the table, for a project of a relatively small size
of 16800 LOC, conventional development methods
prove superior when PSA is kept at a reasonable level
of 1.4 (PDA variations have very limited eff ect on
the results, thus they are largely disregarded in the
discussion). So far this is in line with the results of
the original paper, though one interesting point to
note is that even at this low level of PSA, the Pair
Programming model has fi nished processing its
code backlog considerably earlier than the Waterfall
model. Increasing PSA to 1.8 (the same highest val-
ue that was used in the original paper) changes the
picture quite a bit: now Pair Programming basically
breaks even with Waterfall model for the release date
in terms of money, and considerably outperforms it
in terms of simulation durations in both release and
backlog cases.

Increasing the project’s size by roughly three times
and performing the same tests shows us that for big-
ger projects (i.e. those that will take longer to deliver)
even with modest levels of PSA, Pair Programming
often breaks even (a little less money at the release
date, but on the other hand release is done some-

FIGURE 2. EXAMPLES OF NPV VALUES OBTAINED USING THE PAIR PROGRAMMING (GREEN) AND WATERFALL (BLUE) MODELS

June 2012 Journal of Information Technology and Applications 19

JITA 2(2012) 1:14-21 L. Faynshteyn, V. B. Mišić, J. Mišić:

what earlier) or actually pulls ahead of a convention-
al model. Due to the ever accelerating CoC curve for
the Waterfall model, this gap will be only growing.
For example increasing the size of a project to 50000
LOC brings us to a situation where a team of 8 pro-
grammers is unable to clean up the Code Backlog
within a maximum simulation period of 1050 days,
whereas a Pair Programming team can fi nish it in less
than 600 days with 1.2 million dollars in profi ts.

Th e simulations with non-linear discount rates
confi rm earlier observations. Namely, Waterfall
might win some runs on the release day, but it will
lose everything later due to a huge code backlog.
Note that the Feature to Backlog ratio was actually
kept at a low level of 0.2 (only 20% of the feature
related code was implemented in the course of the
backlog stage), thus actually favoring the Waterfall
model.

Fig. 2 shows examples of two realizations from
one of the runs in case of a mature product for both
the Pair Programming and Waterfall models. Th e
solid green and blue lines represent the NPV values
expressed in $USD for Pair Programming and Wa-
terfall model, respectively. Th e fi rst solid dot on each
line corresponds to the NPV value at the moment
of the initial software release, and the second solid
dot corresponds to the NPV value at the moment
when the entire code backlog has been taken care
of. Similarly the dash-and-dot green and blue lines
represent the amount of coding that still remains
to be done at any given moment in time expressed
in LOC. Th e left vertical axis shows the amount of
$USD, the right vertical axis is the LOC number,
and the horizontal axis is the time of the simulation
expressed in days.

CONCLUSIONS AND FUTURE WORK

As the results of the previous section show, con-
ventional development approaches such a Waterfall
model can prove to be a better choice in cases of a
smaller project with relatively low rate of new feature
requests. However even with a low feature request
rate used in the models (1 new feature every 1.5
months) and a low Feature to Backlog ratio value of
0.2, it is struggling to keep up with the Pair Program-

ming model. Even for modest values of PSA (1.4 is
actually a very realistic value [2][18] confi rmed by
several sources) Pair Programming proves to be a bet-
ter approach: the initial release dates are close enough
to the ones obtained using conventional methods,
while the ability to quickly clean up the backlog will
be a real boon for any company. Also note that even
if Pair Programming losses on paper moneywise, it
often delivers the product earlier (for example in
Table 3 there are cases where the NPVPPR is less
than NPVWFR, but “time to market” is shorter)
and though it is not quantifi able in the scope of this
model it has to be worth something in real life.

Th at having been said, the results of this simula-
tion should be taken with a grain of salt. First, many
values, especially those related to the new feature
generation and code backlogging processes, are no
more than educated guesses, which are mostly based
on the authors’ industrial experience. In real life, they
are likely to vary considerably from project to project
and company to company. However, the results are
representative of qualitative trends.

Second, there is only limited evidence of what the
actual CoC curves look like. In real life, too many
variables, such as coding and managerial practices,
technology and tools used, programmers’ compat-
ibility and expertise, etc. can aff ect their actual shape
and values and defi nitely more research based on real
life data is needed in this fi eld.

Our future research will look into improvements
of the model, for which there are quite a few possi-
bilities. For instance, a feature generation rate can be
made a function of the discount rate, thus refl ecting
the fact that customers usually want to see in the de-
veloped software the same or similar features to the
ones competitors already have in theirs. At the same
time this rate will have to be checked against some
kind of a deadline/cutoff condition. Otherwise we
might end up being swamped with features without
hope of ever fi nishing the project. Finally, diff erent
parts of the model can also be broken down into
smaller pieces to refl ect the underlying processes with
greater detail and accuracy. For instance, such an as-
pect of Pair Programming as pair switching and as-
sociated learning curve can be included in the model.

20 Journal of Information Technology and Applications www.jita-au.com

Analyzing the Cost and Benefit of Pair Programming Revisited JITA 2(2012) 1:14-21

Th is task is simplifi ed by the fact that the process of
System Dynamics model conversion between diff er-
ent modeling suites is a pretty straightforward one,
and thus any aspect of XP software development

cycle implemented as a System Dynamics model to
date can be readily converted into the necessary for-
mat and integrated with the current model with only
minor investments in terms of both time and eff orts.

REFERENCES

[1] Ambler, S. W. (2003). Examining the Agile Cost of Change Curve, http://www.agilemodeling.com/essays/costOfChange.htm
[2] Beck, K. (1999). Extreme Programming Explained:Embrace Change. Addison Wesley.
[3] Boehm, B. (1981). Software Engineering Economics.Prentice-Hall.
[4] Boehm, B. and Turner, R. (2003). Balancing Agility and Discipline: A Guide for the Perplexed. Addison-Wesley Professional.
[5] Capiluppi, A., Fernandez-Ramil, J., Higman, J., Sharp, H. C. and Smith, N. (2007). An Empirical Study of the Evolution of

an Agile-Developed Software System. 29th Int. Conf. on Software Engineering ICSE 2007, Minneapolis, MN.
[6] Cockburn, A. (2000). http://xprogramming.com/articles/cost_of_change/
[7] Cockburn, A. and Williams, L. (2000). Th e costs and benefi ts of pair programming. eXtreme Programming and Flexible Pro-

cesses in Software Engineering XP 2000 .
[8] Erdogmus, H. (1999). Comparative evaluation of software development strategies based on Net Present Value. ICSE Workshop

on Economics-Driven Software Engineering, Los Angeles, CA
[9] Hannay, J. E., Arisholm, E., Engvik, H. and Sjøberg, D. I. K. (2010). Eff ects of personality on pair programming. IEEE Trans-

actions on Software Engineering 36(1):61-80.
[10] Hannay, J. E., Dybåa, T., Arisholm, E. and Sjøberg, D. I. K. (2009). Th e eff ectiveness of pair programming: a metaanalysis.

Information and Software Technology 51(7):1110-1122.
[11] Hulkko, H., & Abrahamsson, P. (2005, 15-21 May 2005). A multiple case study on the impact of pair programming on prod-

uct quality. Int. Conf. on Software Engineering ICSE’2005, St. Louis, MO.
[12] Khalaf, S. J. and Maria, K. A. (2009). An Empirical Study of XP: Th e Case of Jordan. Int. Conf. Information and Multimedia

Technology ICIMT'09, Jeju Island, Korea.
[13] Kuppuswami, S., Vivekanandan, K. and Rodrigues, P. (2003). A system dynamics simulation model to fi nd the eff ects of XP

on cost of change curve. 4th Int. Conf. Extreme Programming and Agile Processes in Software Engineering XP 2003, Genova,
Italy.

[14] Little,T. (2004). Value creation and capture: a model of the software development process. IEEE Software 21(3):48-53.
[15] Madachy, R. J. (2008). Software Process Dynamics. Wiley.
[16] Metropolis, N. and Ulam, S. (1949). Th e Monte Carlo Method. J. of the American Statistical Association 44(247):335–341.
[17] Mišić, V. B., Gevaert, H. and Rennie, M. (2004). Extreme Dynamics: Towards a System Dynamics Model of the Extreme

Programming Software Development Process. ProSim’04 Workshop, Edingburgh, UK.
[18] Padberg, F. and Müller, M. M. (2003). Analyzing the cost and benefi t of pair programming. IEEE METRICS pp. 166-179,

Sydney, Australia.
[19] Padberg, F. and Müller, M. M. (2004). Modeling the impact of a learning phase on the business value of a pair programming

project. 11th Asia-Pacifi c SoftwareEngineering Conf., Busan, Korea.
[20] [20] Shaochun, X. and Rajlich, V. (2006). Empirical Validation of Test-Driven Pair Programming in Game Development.

IEEE/ACIS ICIS-COMSAR 2006, Honolulu, HI.
[21] Williams, L. (2000). Th e Collaborative Software Process. PhD dissertation, University of Utah, Salt Lake City, UT.
[22] Williams, L., Kessler, R. R., Cunningham, W. and Jeff ries, R. (2000). Strengthening the case for pair rogramming. IEEE Soft-

ware 17(4), 19-25.
[23] Yang, Y. and Bosheng, Z. (2009). Evaluating Extreme Programming Eff ect through System Dynamics Modeling. Int. Conf. on

Computational Intelligence and Software Engineering (CiSE 2009), Wuhan, China.

Submitted: April 23, 2012
Accepted: June 7, 2012

June 2012 Journal of Information Technology and Applications 21

