
JITA 3(2013) 2:96-106 M. H. Saračević, P. S. Stanimirović, S. H. Mašović:

 OBJECT-ORIENTED ANALYSIS AND DESIGN FOR
ONE ALGORITHM OF COMPUTATIONAL GEOMETRY:

FORWARD, REVERSE AND ROUND-TRIP ENGINEERING

Muzafer H. Saračević, Predrag S. Stanimirović, Sead H. Mašović
Department of Computer Science, Faculty of Science and Mathematics,

University of Nis, Visegradska 33, 18000 Nis, Serbia.
muzafers@uninp.edu.rs, peckois@pmf.edu.rs ,sead.masovic@pmf.edu.rs

Case study

DOI: 10.7251/JIT1302096S UDC: 378.046.4:004.41]:004.428

Abstract: Triangulation of the polygon is a fundamental algorithm in computational geometry. This paper considers
techniques of object-oriented analysis and design as a new tool for solving and analyzing convex polygon triangulation.
The triangulation is analyzed from three aspects: forward, reverse and round-trip engineering. We give a suggestion for
improving the obtained software solution of the polygon triangulation algorithm using technique that combines UML
modeling and Java programming.

Keywords: Software engineering, Computational geometry, Triangulation of Polygons, Modeling in UML, Java.

 INTRODUCTION

Triangulation enables to get a display of three-
dimensional objects from a set of given points and
provides a mechanism for so-called glazing of three-
dimensional fi gures [8]. Polygon triangulation has
many applications in computer graphics and it is
used in the pre-trial phase of non-trivial operations
of simple polygons [10]. Triangulation of convex
polygons is an actual problem which appears in the
two-dimensional computational geometry [14,19].
Triangulation of a convex polygon assumes decom-
position of the polygon interior into triangles by in-
ternal diagonals that are not intersected.

Polygon triangulation is a complex problem that
requires complex class for an effi cient object-oriented
implementation. In order that this class would be com-
prehensible, it is necessary to do their analysis. Dealing
with the complexity of the same, there is a need for new
techniques to develop alternative views and engineered
for the fi eld of object-oriented modelling.

Th is paper presents an object-oriented analysis
and design (OOAD) based on Hurtado-Noy method
for the triangulation of convex polygon, which is in-
troduced in [11]. OOAD provides a comprehensive
insight into the implementation of this problem.

We present analysis and design for the Hurtado-
Noy method through three aspects, which can be
briefl y described as follows:

1. Direct development (forward engineering): this
approach is based on generating the source
code in a selected programming language
from the UML model (Unifi ed Modeling Lan-
guage). In our case, we have choosen the pro-
gramming language Java.

2. Feedback analysis (reverse engineering): it refers
to the interpretation of the source code that
is generated from defi ned UML models in a
selected programming language.

3. Synchronization of feedback analysis and di-
rect development (round-trip engineering):

96 Journal of Information Technology and Applications www.jita-au.com

 Object-Oriented Analysis and Design for one Algorithm of Computational Geometry:
Forward, Reverse and Round-Trip Engineering JITA 3(2013) 2:96-106

this aspect investigates the synchronization
between the source code changes and UML
models.

BASELINES AND PRELIMINARIES

Th e number of all triangulations of a convex poly-
gon with n vertices is equal to the (n-2)th Catalan
number

 
   2

2 4 !
, 3

1 ! 2 !n

n
C n

n n


 

 
 (1)

For more details about the convex polygon trian-
gulation see for example [15].

Details of Hurtado-Noy method [11]: Let T(n)
be the set of triangulations of an n-gon. Every trian-
gulation t that belongs to T(n) has exactly one “pre-
decessor” in T(n-1) and one or more “descendants”
in the set of triangulations T(n+1). For a given set
T(n), there is a possibility to generate triangulations
of the (n+1)-gon derived from arbitrary triangula-
tion t ∈T(n). Th is principle is illustrated in Figure 1.

FIGURE 1. Forming the new triangulation for (N+1)-gon,
according to HURTADO-NOY METHOD

Algorithm 1 describes the Hurtado-Noy method
from [11].

Based on the above principle of separation of
predecessor, Hurtado and Noy provided the hierarchy
which is important because of its inherent simplicity
and also owing to the fact that it has a number of
really exciting properties (see Figure 2, restated from
[11]).

An implementation of this algorithm in Java pro-
gramming language is presented in our paper [23].
In the mentioned implementation, the phase of
coding on the basis of a given Algorithm 1 was per-
formed without prior analyzing and creating a visual
plan. Th is way of solving the problem can adversely
aff ect the functionality and intelligibility of gener-
ated source code.

A better understanding and detailed analysis of
Hurtado-Noy method is achieved applying forward
engineering on the same algorithm. In addition, we
get a developed visual model (plan for solving) which
is independent of implementation and technology.
Th is approach deals with the defi ned model that al-
lows the transition to the phase of coding (program-
ming). After fi nishing the programming phase, re-
verse and round-trip engineering play a key role in
the maintenance and evolution of the obtained solu-
tion for Algorithm 1.

Th is paper is organized as follows. Section 2 des-
ribes the UML modeling process appropriate for
generating triangulations of the convex n-gon. Th is
section presents the possibility of generating Java
source code from UML model. Also, in this section
we presented Java experimental results obtained by
the developed software solution. A method for im-
proving already created software solutions in a select-
ed programming language is given in the section 3.
Th e improvement is based on advanced techniques

Algorithm 1.Hurtado-Noy method
Require: Positive integer n
1: Check the structure containing 2n–5 vertex pairs looking for pairs (ik , n–1), ik∈ {1, 2, ..., n–2}, 2 ≤ k ≤
n–2, i.e. diagonals incident to vertex n-1. Th e positions of these indices ik within the structure describing a
triangulation should be stored in the array.
2: For every ik perform the transformation (il , n–1) → (il , n); il<ik , 0 ≤ l ≤ n-3.
3: Insert new pairs (ik , n) and (n – 1, n) into the structure.
4: Take next ik, if any, and go to Step (2).
5: Continue the above procedure with next (n–1)-gon triangulation (i.e. structure with 2n – 5 vertex pairs)
if any. Otherwise halt.

December 2013 Journal of Information Technology and Applications 97

JITA 3(2013) 2:96-106 M. H. Saračević, P. S. Stanimirović, S. H. Mašović:

for reverse engineering and synchronization of the
UML models and the Java source code. Advantages
of all three approaches are listed in the last section.

RELATED WORKS

UML modelling has found various applications
that cover a wide spectrum of diff erent application
domains. During software evolution, programmers
devote most of their eff ort to the understanding of
the structure and behaviour of the system.

Th e paper [20] proposes an UML-based software
maintenance process. Th e authors give the descrip-
tions as variants of UML profi les, describing the
styles and rules relevant for a particular application
domain. A reverse engineering sub-process, combin-
ing top-down and bottom-up reverse engineering ac-
tivities, aims at constructing the architectural mod-
els. Th e authors describe some of the most advanced
techniques that can be employed to reverse engineer
several design views from the source code. Th e paper
[18] presents the form driven object-oriented reverse
engineering methodology by using forms to recover
semantics of legacy applications. Th e authors propose
the application to demonstrate the practical usability
of the object-oriented reverse engineering methodol-
ogy by transforming the resulting object models into
well-known UML-based models [12].

Th e paper [7] presents code reverse engineering
problem for identifi cation object-oriented source
codes. Paper [21] proposes reverse engineering se-

quence diagrams from enterprise Java beans with inter-
ceptors. In the paper [2] authors present an approach
and tool to automatically instrument dynamic web
applications using source transformation technology
and to reverse engineer an UML sequence diagram
from the execution traces generated by the resulting
instrumentation. Th e authors of the paper [24] pro-
pose combination of the three relations in such way
that enables a comprehensive measure of complexity
of class diagrams in reverse engineering. A research
that is relevant to the application of UML use case
diagrams and their comparison, in order to obtain the
best possible software at the stage of verifi cation and
validation of the software, is presented in [9].

Th e paper [4] describes the procedure of model-
ling at the level of hardware, systems and algorithms.
Th e article [16] describes the interaction between be-
haviour diagrams (activities and states) and interac-
tion diagrams. Th e method of automatic consistency
checking between the two given diagrams is given in
[5]. Th e paper [13] represents the solution of the ob-
ject-oriented approach in the design and implemen-
tation of web based solutions through UML and Java
code. Full analysis of how to model one problem in
educational purposes and represent it in a compre-
hensible way is given in the paper [3].

FORWARD ENGINEERING FOR POLYGON TRIANGULATION
ALGORITHM

UML is a language that creates an abstract model
of the system through a set of graphical diagrams. It

FIGURE 2. Levels three to six of the tree of triangulations - HURTADO NOY HIERARCHY

98 Journal of Information Technology and Applications www.jita-au.com

 Object-Oriented Analysis and Design for one Algorithm of Computational Geometry:
Forward, Reverse and Round-Trip Engineering JITA 3(2013) 2:96-106

can be used for specifi cation, visualization, design-
ing and documentation of the systems development.
General classifi cation of standard UML views (mod-
els) can be divided into: static, dynamic and physical
model. Modeling in UML has various applications
[1,12,20,25] that cover a wide spectrum of diff erent
application domains. We monitor the implementa-
tion of the convex polygon triangulation by means of
UML modeling. Th is monitoring is carried out from
abstract ideas, through particular classes, activities,
states and behavior of the system, until the physical
distribution.

Modeling in UML: static, dynamic and physi-
cal model
Our project for modeling Hurtado-Noy algo-

rithm contains 47 diagrams totally, 36 of which are
associated with the dynamic model. Table 1 presents
all listed diagrams.

TABLE 1. Overview of UML diagrams

Type UML diagrams No. of diagrams

Static
models

Class diagrams 1

Object diagrams 8

Dynamic
models

Use case diagrams 8

Activity diagrams 7

State-Chart diagrams 7

Sequence diagrams 6

Collaboration diagrams 4

Interaction overview diagram 4

Physics
models

Deployment diagram 1

Component diagram 1

All models of the system which are obtained
from the developed environment (Visual Paradigm
for UML and NetBeansUML), can be downloaded
from[27].

Class diagram describes the static structure of the
system. Classes are modeled and mutually connected
using these diagrams, while the objects are described
by their attributes and relationships with other ob-
jects. Each object has a number of methods that can
be performed, which is modeled by his behavior. Th e
UML class diagram for Hurtado-Noy algorithm is
presented on Figure 3. Th ese classes are called Gen-

erateTriangulations, Triangulation, Node, LeafNode,
Point and PostScriptWriter.

Th e class Triangulation is responsible for display-
ing a convex polygon triangulation. Th is class pro-
vides verifi cation of all the vertices of the polygon.
Method Draw is a member of the class Triangulation.
Th is method is responsible for making an individual
triangulation, which is defi ned by the underlying
combination of internal diagonals. Method DrawAll
also belongs to the class Triangulation and it provides
iteration where the method Draw is called Cn-2 times.
Th e Hurtado method (member of the class Generate-
Triangulations), creates string of objects of the class
Node that is used to obtain the appropriate number
of vertices (nodes) to form the regular convex poly-
gon. Th e method drawLine is responsible for draw-
ing regular convex polygons. Th e main executive
method in Java is defi ned in the class GenerateTrian-
gulations, that requires the input parameter .

Th ree types of connections are defi ned in the Class
Diagram: dependency, generalization and associa-
tion. Dependency is most commonly used when one
class uses another one as an argument. Example of
the dependency connection is the relation between
the class Triangulation and the main class Genera-
teTriangulations (see Figure 3). Th e Association is a
relationship which specifi es that objects are associ-
ated with other objects (e.g. Triangulation with Node
and Triangulation with Point). Generalization is a
relationship between classes where one class shares
the structure and/or behavior of one or more classes.
Generalization also defi nes a hierarchy in which a
subclass inherits one or more of the superclass (e.g.
Node with LeafNode).

Operations from the Class diagram are further
described with behavior and interaction diagrams
that together form a dynamic model of the system.
Behavior diagrams include activities and state chart
views of the system. Interaction diagrams provide
data fl ow between the objects through sequence and
communication diagrams.

• Activity diagrams implement the following
methods: createTriangulation, Hurtado, Display-
Triangulations, Draw, DrawAll and etc. (all meth-
ods from the Class diagram).

December 2013 Journal of Information Technology and Applications 99

JITA 3(2013) 2:96-106 M. H. Saračević, P. S. Stanimirović, S. H. Mašović:

• State-Chart diagrams are used to give an abstract
description of the algorithm’s behavior. An exam-
ple of the transition from one state to another is a
process of generating triangulation using appro-
priate methods for moving into their recording
and drawing states. Each of these transition states
has three optional parts: alerted event (starting
methods for GenerateTriangulations), security
criteria (aimed to generate an exact number of
triangulations, equal to the Catalan number) and
activity (drawing triangulation with their nota-
tions).

• A sequence diagram shows object (class) interac-
tions arranged in time sequence and gives a clear
display of cooperation between the class Triangu-
lation and the main class GenerateTriangulations.

• Diagram of collaboration refers to the interaction
of objects (all classes in Figure 3).

Use Case Diagram represents the functional re-
quirements which are imposed to the system. Within
the problem of triangulation of polygons, we can ob-
serve the following use cases illustrated on Figure 4:
generating triangulation, storage (recording) and draw-
ing triangulation.

FIGURE 4. Use case diagram

Figure 4 illustrates the general division of all
methods into three groups:

- methods that generate triangulation (with draw-
ing and storing it in the output fi le),

- methods responsible for the assignment of ap-
propriate notation,

- methods that store the triangulation in diff erent
formats through JDBC API.

In addition to these activities, the last stage is
drawing triangulation. Th is stage is supported by
corresponding Java package for the geometry [22].

FIGURE 3. Class diagram

100 Journal of Information Technology and Applications www.jita-au.com

 Object-Oriented Analysis and Design for one Algorithm of Computational Geometry:
Forward, Reverse and Round-Trip Engineering JITA 3(2013) 2:96-106

Th e physical model is implemented through the
component diagrams and development (or deploy-
ment) diagrams. Deployment diagram shows the
hardware structure of the system, i.e. the communi-
cation between hardware and software components
(dependency connection supports). Software compo-
nent is the implementation of methods, while hard-
ware component is Java JDK platform with its com-
ponents to support the implementation.

Th e component diagram (Figure 5) represents the
structure of the system and describes the dependence
of the components of the system. Th e elements of
the diagram are the source codes, library, dynamic
components and executable programs.

Generating Java source code from UML models
Th e idea of generating source code is always as-

sociated with the tools and techniques that are based
on UML. Th e source code based on the class diagram
could be generated in some environments, such as
Visual Paradigm for UML and NetBeansUML. Th e
process of generating source code based on the creat-
ed model leads to the general structure of a software
solution for the algorithm. In this way, we can pro-
vide a fast and effi cient transfer model in a customiz-
able Java source code. Th e application of the direct
development on the Class Diagram we get all the
classes with the general structure (i.e. declarations of
variables and headers of their methods).

Th e complete structure that is obtained from the
UML models can be downloaded from [28].

Example 1. Here we specify one example of gen-
erating one segment of the Java source code for the
classes Triangulation and GenerateTriangulations. Th e
sign “*” denote that there is a possibility for the code
modifi cation in order to achieve the necessary and/or
desired functionalities.

public class Triangulation{

//attributes public
Object private int sCursorX;
public Object private int sCursorY;
public Object private Vector<Point>
points;
public Object private PostScriptWriter
writer;

//operations
public void Draw() {*}
public void DrawAll(Vector<Node> trees)
() {*}
public void clear(){*}
public void copyFrom(Object int aOffset,
Object Node t) {*}
}

public class GenerateTriangulation
implements Triangulation
//operations

FIGURE 5. Component diagram

December 2013 Journal of Information Technology and Applications 101

JITA 3(2013) 2:96-106 M. H. Saračević, P. S. Stanimirović, S. H. Mašović:

public void Vector<Node>
createTriangulations (Object int limit)
{*}
public void static void main(Object
String args[]){*}

}

Exp erimental results
Programming phase is the next step that comes

after the procedure of direct development. We used
the NetBeans IDE environment available in Java for
the implementation of this phase. A comparative
analysis of the implementations of the Hurtado-Noy
algorithm in three programming languages (Java,
Python and C++) is presented in our paper [23].
Numerical experience from this paper shows that the
implementation in Java programming language pro-
duces the best results.

Table 2 contains CPU times required for gener-
ating all possible triangulations of convex polygon
(denotes the number of the polygon vertices).

TABLE 2. Execution time for the JAVA application

Num. of

vertices

No. of

triangulations

Execution time

(in sec.)

File output size

(in Kb)

5 5 0.2 0.1

6 14 0.3 0.4

7 42 0.4 1.7

8 132 0.5 6.4

9 429 0.6 24.5

10 1430 0.9 93.1

11 4,862 2.2 355.6

12 16,796 5.8 1,363.2

13 58,786 15.2 4,121.4

14 208,012 46.34 11,523.6

15 742,900 124.18 29,874.29

Numerical results are derived using personal
computer with performances: CPU - Intel(R) Co-
re2Duo, T7700, 2.40GHz, L2 Cache 4 MB (On-
Die,ATC),RAM Memory -2 Gb, Graphic card -
NVIDIA GeForce 8600M GS.

Based on the obtained results, it can be observed
that increasing the values of n (number of vertices)
increases the number of generated triangulations per
second (Figure 6). Th e vertical axis of the graphical

representation contains the number of displayed tri-
angulations per second while the horizontal axis con-
tains values for n.

FIGURE 6. Number of generated triangulation per second for
N = 5,…,15.

Java application can be downloaded from [29].

REVERSE AND ROUND-TRIP ENGINEERING: MAINTENANCE
AND EVOLUTION OF SOFTWARE SOLUTION

Th is section provides a procedure for the feedback
analysis and the ability to synchronize the implemen-
tation of algorithm for triangulation, which turned
out to be the best solution.

Reverse engineering and visualization of source
code lead to improved program comprehension. Th e
main advantages are: learning unfamiliar code, code
reuse, software maintenance, change impact analysis,
integrating open source code and etc. Th is approach
has various applications for identifi cation of the ob-
ject-oriented codes [6,26].

Th e reverse engineering for the implementation
of a polygon triangulation is implemented through
two phases:

1. It begins with the classifi cation of the complete
source code in formal units (classes) to obtain
the static model (use–case and class diagrams).

2. On the basis of modeled attributes and op-
erations, their descriptions are further decom-
posed into dynamic diagrams.

Round-trip engineering presents synchronization
of direct development and feedback analysis, which
is a good practice in the analysis and maintenance
of the implementation [7,17]. Th eir benefi ts are di-

102 Journal of Information Technology and Applications www.jita-au.com

 Object-Oriented Analysis and Design for one Algorithm of Computational Geometry:
Forward, Reverse and Round-Trip Engineering JITA 3(2013) 2:96-106

rectly related to the change of the source code from
UML model and vice versa (see Figure 7).

FIGURE 7. Synchronization of direct development and
feedback analysis

Example 2. For synchronizing UML project
and Java project for the triangulation polygon, Net-
BeansUML module will log various lines of text to
the Output Window as follows:

“...Initial reverse engineering into a new project:
Begin processing Reverse Engineering, Parsing 56
elements, Analyzing attributes and operations for
72 symbols, Resolving 54 attribute types, Integrating
72 elements,Building the query cache...”.

Th e output result describes the operations that
took place: 72 model elements were used to generate
Java source code fi les.Table 3 presents the fulfi llment
requirements in the process of synchronizing UML
project and Java project for triangulation of a convex
polygon (*DP - Design pattern, A - Attributes, O -
Operations, I - Implementation, R - Relationships).

TABLE 3. Requirements in the round-trip engineering

 REQUIREMENTS
Triangula-

tion

Generate

Triangula-

tions

1 Navigate to Source + +

2 Generate Dependency diagram + +

3 Generate Code + +

4 Generating report + +

5 Element Navigation + +

6 Refactoring in synchronizing + +

7 Find and Replace in UML model +

8 Apply DP and source code readability +

9 Manipulation with A, O, I and R* + +

Description of Requirements: In the Net-
BeansUML module there is the possibility of auto-
matic detecting source code if the synchronization
between the UML project and Java NetBeans project
is properly set up (requirements 1,2,3 and 5 from
Table 3.1). In this way, it reduces the complexity of
the triangulation problem.

Programming and adding new functionality of the
system is also facilitated. For the reverse and round-
trip engineering process it is important to mention
the procedure for generating a report of the model.
Th e report describes all classes defi ned in the project
and the use of packages, interfaces and data types in
the implementation (requirement 4).

Th e main categories of reverse engineering are au-
tomatic restructuring and automatic transformation.
Th e fi rst category refers to re-factoring and re-mod-
ularization that is applied with the aim of obtain-
ing a better source code (requirements 6 and 7). Th e
second category refers to the application of standards
in coding, which is applicable in order to obtain the
source code readability (requirement 8).

Re-factoring changes the internal structure of
the software (requirement 9) in order to be easier to
understand and simpler to modify, without visible
changes of his behavior.

Th e following actions are implemented in our
project in the procedure of code re-factoring: extract
and move method, class and super-class; extract inter-
face; use super-type where is possible; creating a template
method and encapsulate fi elds.

Obtained results in the improved software so-
lution
Table 4 presents the results of improving software

solution for the Hurtado-Noy algorithm. Data de-
rived after improvements are presented by the sign
’*’. Th ree criteria are used in the comparison: the
number of source code lines, the size of Java fi le (in
bytes) and measuring the time (speed) in seconds
(individually for each Java fi le), for n = 5,…,15, cu-
mulative.

December 2013 Journal of Information Technology and Applications 103

JITA 3(2013) 2:96-106 M. H. Saračević, P. S. Stanimirović, S. H. Mašović:

FIGURE 8. Improvemets (in %) for Hurtado-Noy algorithm
(individually by classes)

Figure 8 shows the percentage of improving the
source code for three criteria, individually for each
segment of the implementation.

In process of code review for Hurtado-Noy algo-
rithm, NetBeans module “Unnecessary Code Detector”
recognizes the following: unused imports , unread lo-
cal variable , unread parameter , unnecessary method or
constructor , unread private method, constructor or type
and unread local or private members .

Some advantages that occur in the application of
the reverse and round-trip engineering in our imple-
mentation are:

1. Better understanding of defi ned classes and
their methods, identifying interdependencies,
ways of communication and data fl ow. Hence,
given technique off ers the possibility of gener-
ating alternative views of the problem.

2. Source code analysis obtained through several
models (primarily static and dynamic) provide
the possibility to expand the source code and
simplify methods. Th is allows the detection of
repeated cases in the code.

Segment line line* bytes bytes* speed speed*

Triangulation 79 67 2275 1715 29.12 26.14

GenerateTriangulation 222 195 8544 7194 37.56 34.33

Node 45 41 745 578 4.51 4.01

LeafNode 27 19 342 216 3.21 2.85

Point 10 9 134 112 1.52 1.51

PostScriptWriter 56 55 1830 1791 2.74 2.62

TOTAL 439 386 13870 11606 78.66 71.46

Improvement (%) 13.73 19.51 10.08

TABLE 4. Improvement of source code for Hurtado-Noy algorithm

Engineering Advantages

Forward
Multi-dimensionality of the system and the high level of abstraction

Effi cient transparency of the system structure

Spotting the functional wholes

Generating the source code

Reverse
Analysis and interpretation of the implementation problems

Logical design and better visibility of source code

Disassemble of Java code

More eff ective maintenance of a software solution

Round-Trip
Synchronized changes from model to source code or vice versa

Generate reports that describe class (graphic and program description)

Combining the advantages of the fi rst two approaches

TABLE 5. Advantages of three approaches

104 Journal of Information Technology and Applications www.jita-au.com

 Object-Oriented Analysis and Design for one Algorithm of Computational Geometry:
Forward, Reverse and Round-Trip Engineering JITA 3(2013) 2:96-106

3. After locating and removing the source code or
modules that are not used anymore, we reduce
the complexity of the problem and simplify
the source code. Th erefore, we achieved bet-
ter results concerning the speed of generating
triangulations per second.

Table 5 shows the identifi ed advantages of all
three approaches in the implementation.

CONCLUSION

Th is paper outlines the key advantages of the ob-
ject-oriented analysis and design in solving the con-
vex polygon triangulations, which is a fundamental
algorithm in computational geometry. Direct devel-
opment has the advantage of generating the source
code in some of the object-oriented programming
languages, while reanalysis technique aims to de-
scribe the implementation of the problem through
various aspects. Synchronization procedure com-
bines the advantages of these two approaches.

Based on the presented testing, we conclude that
the best practice is the synchronization technique
that combines Java programming and UML model-
ing. Some of the advantages of reverse engineering
and synchronization of direct development and feed-
back analysis to solve the problem of triangulation
are coping with the complexity of the problem, bet-
ter understanding of the classes and their methods,
identifying interdependencies, ways of communica-
tion and data fl ow. In addition, a given technique of-
fers the possibility of generating alternative views of

the problem. Source code analysis obtained through
several models allows you to see the problem from
the aspect of expandability of the source code (add-
ing new methods), possibilities of simplifi cation of
methods, redefi ning the methods and synthesis and
analysis methods. In this way they can link certain
implementation on the basis of their dynamic and
static models. Th is allows the detection of second-
ary occurrences and repeated cases. OOAD tech-
nique enables reuse of already implemented classes,
in terms of easy and effi cient adding new attributes
and operations.

Obtained results indicate improvement of soft-
ware solutions through three aspects: the number of
source code lines, the size of output fi le and speed of
execution. Th e archival value of the paper is a con-
tribution to the engineering education through a
case study in the computational geometry. Th is tech-
nique of three approaches can be applied as a new
method for solving and analyzing related problems.
Generally, the suggested approach is suitable for the
implementation of some other algorithms in compu-
tational geometry.

Acknowledgement
Th e authors gratefully acknowledge support from the Research Project
174013 of the Serbian Ministry of Science.

Authorship statement
Author(s) confi rms that the above named article is an original work, did
not previously published or is currently under consideration for any other
publication.

Confl icts of interest
We declare that we have no confl icts of interest.

REFERENCES

[1] Aghasaryan, A., Jard, C., and Th omas, J. (2004). UML Specifi cation of a Generic Model for Fault Diagnosis of Telecommu-
nication Networks. In Proceedings of 11th International Conference on Telecommunications, Fortalezza, Brasil, 841-847.

[2] Alalfi , M.H., Cordy, J.R., and Dean, T.R. (2009). Automated Reverse Engineering of UML Sequence Diagrams for Dynam-
ic Web Applications. In IEEE international conference on software testing, verifi cation, and validation workshops, 287-294.

[3] Ayachi-Ghanouchi, S., Cheniti-Belcadhi, L., and Lewis, R. (2013). Analysis and modeling of tutor functions. Computer
Applications in Engineering Education, 21 (4), 657–670.

[4] Bahill Tand Daniels, J. (2002). Using object-oriented and UML tools for hardware design: A case study. Systems Engineering,
6 (1), 28-48.

[5] Belt, J. (2005). Automated Consistency Checking between UML State Charts and Sequence Diagram. CIS 798.
[6] Bruegge, B. (2004). Object-Oriented software engineering: Using UML, patterns and Java. Pearson Education, New Jersey.
[7] Bringer, J., and Chabanne, H. (2012). Code Reverse Engineering Problem for Identifi cation Codes. IEEE transactions on

information theory, 58(4), 2406–2412.
[8] Chen Jand Chen, C. (2008). Foundations of 3D Graphics Programming: Using JOGL and Java3D. Springer, New York.

December 2013 Journal of Information Technology and Applications 105

JITA 3(2013) 2:96-106 M. H. Saračević, P. S. Stanimirović, S. H. Mašović:

[9] Funkhouser, O., Etzkorn, L., and Hughes, W. (2008). A Lightweight Approach to Software Validation By Comparing UML
Use Cases with Internal Program Documentation Selected Via Call Graphs. Software Quality Journal, 16 (1), 131-156.

[10] Garey, M.R., Johnson, D.S., Preparata, F., Pand Tarjan, R.E. (1978). Triangulating a simple polygon. Inform. Process. Lett,
7, 175–180.

[11] Hurtado, F., and Noy, M. (1999). Graph of Triangulations of a Convex Polygon and tree of triangulations. Computational
Geometry, 13, 179–188.

[12] Huynh, S., Cai, Y., and Shen, W. (2008). Automatic Transformation of UML Models into Analytical Decision Models.
Technical Report DU-CS-08-01, Drexel University.

[13] Jayaramaraja, S. (2005). An object-oriented design and reference implementation for web-based instructional software.
Computer Applications in Engineering Education, 13 (1), 26-39.

[14] Klawonn, F. (2012). Introduction to Computer Graphics: Using Java 2D and 3D: Second Edition. Springer, New York.
[15] Koshy, T. (2009). Catalan Numbers with Applications. Oxford University Press, New York.
[16] Knapp, A., and Merz, S. (2002). Model Checking and Code Generation for UML State Machines and Collaborations Tools

for System Design and Verifi cation. Institut fur Informatik, Universitat Augsburg, 59-64.
[17] Lano, K. (2005). Advanced Systems Design with Java, UML, and MDA. Elsevier publisher.
[18] Lee, H., Yoo, C. (2000). A form driven object-oriented reverse engineering methodology. Information systems, 25 (3), pp.

235-259.
[19] Loera Jand Santo, F. (2003). Triangulations: Structures for Algorithms and Applications. Springer Verlag, New York.
[20] Riva, C., Selonen, P., Systa, T., and Xu, J. (2004). UML-based reverse engineering and model analysis approaches for

software architecture maintenance. In Proceedings of 20th IEEE international conference on software maintenance, USA,
50–59.

[21] Roubtsov, S., Serebrenik, A., Mazoyer, A., and Brand, M. (2011). I2SD: Reverse Engineering Sequence Diagrams from
Enterprise Java Beans with Interceptors. In 11th IEEE international working conference on source code analysis and ma-
nipulation (SCAM 2011), 155-164.

[22] Saračević, M., Stanimirović, P., and Mašović, S. (2013). Implementation of some algorithms in computer graphics in Java.
Technics Technologies Education Management, 8 (1), 293–300.

[23] Saračević, M., Stanimirović, P., Mašović Sand Biševac, E. (2012). Implementation of the convex polygon trangulation algo-
rithm. Facta Universitatis, series: Mathematics and Informatics, 27 (2), 67–82.

[24] Sheldon, F.T., and Chung, H. (2006). Measuring the complexity of class diagrams in reverse engineering. Journal of software
maintenance and evolution-research and practice, 18 (5), 333-350.

[25] Stanimirović, P., Tasić, M., Saračević, M., and Mašović, S. (2012). UML-based modeling for Moore-Penrose inverse com-
putation. Revista Metal. International, 17 (12), 99–106.

[26] Tonella, P. (2005). Reverse engineering of object oriented code. In Proceedings of 27th International Conference on Soft-
ware Engineering. Missouri, USA, 724–725.

[27] Link for all UML models:http://muzafers.uninp.edu.rs/triangulation/UMLTriang.rar
[28] Structureof Java Code:http://muzafers.uninp.edu.rs/triangulation/GeneralStructureHurtado.rar
[29] Link for Java application:http://muzafers.uninp.edu.rs/triangulation/Hurtado.rar

Submitted: October 30, 2013.
Accepted: December 7, 2013.

106 Journal of Information Technology and Applications www.jita-au.com

