
From .NET Core to .NET 8: A Comprehensive Analysis of Performance, Features, and Migration Pathways	 JITA 14(2024) 1:69-77

From .NET Core to .NET 8: A Comprehensive Analysis
of Performance, Features, and Migration Pathways

Branimir Cvijić1, Pero Ranilović2
1Endava, Banja Luka, RS, BiH, cvijic.branimir@gmail.com

2Pan-European University “Apeiron”, Banja Luka, RS, BiH, pero.d.ranilovic@apeiron-edu.eu

Review paper
https://doi.org/10.7251/JIT2401069C	 UDC: 004.432.2C#:004.738-.1

Abstract: This analysis embarks on a comprehensive exploration of the .NET ecosystem’s evolution, with a spotlight on the transition
from .NET Core to the unified .NET platform, culminating in the release of .NET 8. It meticulously examines the performance
enhancements, feature evolutions, and migration strategies that underscore this transition, providing a lens through which the
future trajectory of .NET, including the anticipation of .NET 9, can be discerned. By offering a deep dive into the comparative
performance metrics and the introduction of novel features across versions, this paper caters to IT professionals, students, and
technology aficionados seeking to grasp the full extent of .NET’s capabilities and its strategic direction. The findings aim to not
only delineate the technical advancements but also to contextualize the platform’s ongoing innovation within the broader software
development ecosystem.

Keywords: .NET core, Unified .NET platform, Migration strategies, Performance benchmarking

Introduction

Before the advent of .NET Core, the .NET Frame-
work dominated Microsoft’s development landscape,
tailored primarily for Windows applications. As global
software development trends shifted towards more
agile, scalable, and cross-platform solutions, the need
for a more flexible framework became evident. In re-
sponse, Microsoft introduced .NET Core, fundamen-
tally designed to address these modern computing re-
quirements with support for modular, cross-platform
development across Windows, Linux, and macOS.
Launched as an open-source framework, .NET Core
represented a significant departure from the tradi-
tional .NET Framework. [1] The evolution of the .NET
ecosystem, particularly the transition from .NET Core
to the unified .NET platform, marks a pivotal shift in
the landscape of software development. This journey,
which extends to the advent of .NET 8, is not merely
a series of technological advancements but a compre-
hensive strategic realignment towards creating an in-
clusive, performance-optimized, and feature-rich eco-
system. The cornerstone of this evolutionary path was
.NET Core 3.1, celebrated as the last Long-Term Sup-

port (LTS) version within the .NET Core series. It es-
tablished a robust foundation that catalyzed the seam-
less transition to subsequent versions, each introduc-
ing significant enhancements and capabilities.

This paper aims to dissect the intricate progres-
sion from .NET Core 3.1 to .NET 8, providing a granu-
lar analysis of performance improvements, feature
augmentations, and the nuances of migration strate-
gies. By delving into the evolution of the platform, the
analysis is tailored to offer IT professionals, students,
and technology enthusiasts a detailed comprehen-
sion of .NET’s expansive capabilities and its trajec-
tory towards future developments. Furthermore, a
preliminary overview of .NET 9 is included, offering
insights into the continuing innovation within the
.NET ecosystem.

A focus on detailed performance benchmarks and
feature analysis will underscore the platform’s de-
velopmental milestones, illuminating the strategic
insights gleaned through its evolution. This paper
is committed to mapping out .NET’s transformative
journey, highlighting the technological and strategic
milestones that have underpinned its growth and
continue to shape its future.

June 2024 Journal of Information Technology and Applications 69

JITA 14(2024) 1:69-77	 Branimir Cvijić, Pero Ranilović

.NET Core overview

.NET Core has represented a significant shift in the
.NET framework’s development, aiming to provide a
more modular, cross-platform development experi-
ence. [1] It was designed from the ground up to sup-
port the development of applications for Windows,
Linux, and macOS, thereby broadening the .NET eco-
system beyond its traditional Windows-centric roots.
The introduction of .NET Core was a response to the
evolving needs of the software development commu-
nity, emphasizing performance, scalability, and the
ability to run in diverse environments.

Genesys and evolution of .NET Core
.NET Core’s journey began as a lean and compos-

able framework that sought to address the emerging
trends in software development, including cloud-
based applications and microservices architectures.
It introduced a side-by-side installation feature, al-
lowing different versions of .NET Core to coexist on
the same machine and thus enabling greater flexibil-
ity in application deployment and maintenance. Over
its lifecycle, .NET Core saw rapid iteration and im-
provement, with each version bringing performance
enhancements, expanded API sets, and better tooling.

Spotlight on .NET Core 3.1
When .NET Core 3.1 was released in December

2019, it was declared the final and most polished ver-
sion of the .NET Core series. As an LTS version, it was
guaranteed support from Microsoft for three years,
making it a stable base for developers looking to
build high-performance web and cloud applications.
.NET Core 3.1 brought several key features and im-
provements: [2]

-- Enhanced Performance: Continuing the .NET
Core tradition, 3.1 improved on its predeces-
sors’ performance metrics, offering more ef-
ficient memory usage, faster algorithms, and
optimizations in the core libraries.

-- Desktop application support: With the intro-
duction of Windows Forms and WPF (Windows
Presentation Foundation) on Windows, .NET
Core 3.1 bridged the gap between modern web
application development and traditional desk-
top application development.

-- Improved Container Support: Recognizing the
importance of containerization and microser-

vices, .NET Core 3.1 enhanced its capabilities
to run more efficiently in containers, including
smaller image sizes and more customizable
runtime images. [3]

-- Platform expansion: - It maintained support
for a broad array of operating systems, further
solidifying .NET Core’s position as a versatile,
cross-platform framework.

Transition to the unified .NET platform
.NET Core 3.1 set the stage for the transition to the

unified .NET platform, starting with .NET 5. This transi-
tion aimed to bring together the best of .NET Core, .NET
Framework, Xamarin, and Mono under a single plat-
form, simplifying the .NET landscape and offering a uni-
fied path forward for all types of .NET development. The
move represented not just an evolutionary step in terms
of features and performance but also a unification of the
.NET ecosystems, streamlining the development experi-
ence across application types and platforms.

Prelude to AI integration in .NET 8
Looking beyond .NET Core 3.1, the .NET platform

continues to evolve, with .NET 8 introducing AI and
machine learning capabilities as a testament to the
framework’s adaptability and forward-thinking de-
sign. These integrations signal a future where .NET
is not just about building applications but also about
incorporating intelligent features and data-driven in-
sights directly into those applications.

Key Feature Evolution in the .NET platform
Exploring the significant enhancements and new

capabilities introduced with each successive version
of the .NET platform, from the foundational .NET Core
3.1 through to the innovative .NET 8, reveals a trajec-
tory of continuous improvement and expansion. This
journey reflects Microsoft’s dedication to addressing
the evolving needs of developers and organizations,
through the provision of a versatile and powerful
framework capable of supporting the development
of modern applications. Here’s a closer look at how
these features have evolved, emphasizing the plat-
form’s adaptability and forward-looking approach.

From .NET Core 3.1 to Unified Platform
Unified platform transition: .NET 5 marked a piv-

otal milestone, merging .NET Core, .NET Framework,

70 Journal of Information Technology and Applications www.jita-au.com

From .NET Core to .NET 8: A Comprehensive Analysis of Performance, Features, and Migration Pathways	 JITA 14(2024) 1:69-77

Xamarin, and Mono into a single, streamlined frame-
work, simplifying the development ecosystem. [4]

C# 9 and F# 5 Enhancements
Introduced significant language features like re-

cords in C# for immutable data models and pattern
matching improvements, alongside new F# features
to enhance functional programming.

Blazor WebAssembly: Facilitated the development
of full-stack web applications with C#, running client-
side logic in the browser via WebAssembly, thereby
broadening the scope of .NET in web development.

Progression with .NET 6: Enhancing
Productivity and Performance
Minimal APIs: Introduced to simplify the creation

of HTTP APIs, these APIs reduce the boilerplate code
necessary for setting up microservices and small web
applications.

C# 10 Innovations: Brought global using directives
and record structs, among other features, making code
more concise and improving developer productivity.

MAUI Preview: .NET Multi-platform App UI (MAUI)
previewed, offering a path toward building cross-plat-
form mobile and desktop apps from a single codebase.

.NET 7 Connectivity, Cloud Optimization
and Code Refinement
Language Advancements: C# 11 and F# 6 intro-

duced further enhancements, such as list patterns
in C# for more expressive code and syntax improve-
ments in F#.

ASP.NET Core and Blazor Improvements: Signifi-
cant advancements in web development capabilities,
including better Blazor components and SignalR cli-
ent reconnections, underscored .NET’s commitment
to web technologies.

.NET MAUI official release: Delivered a robust
framework for developing native applications across
Android, iOS, macOS, and Windows, streamlining
cross-platform development.

.NET 8, Integrating AI and expanding
capabilities
AI and Machine Learning Integration: Demon-

strated .NET’s adaptability by incorporating AI tool-
ing and libraries, empowering developers to build
intelligent, data-driven applications. [5]

Continuous Enhancements: Ongoing improve-
ments in C# and core platform features focused on el-
evating developer productivity, optimizing application
performance, and enhancing cross-platform support.

Improved Native Interop: Made it easier to inte-
grate with native libraries, critical for applications
requiring high performance and direct access to un-
derlying system capabilities.

Performance Enhancements in .NET Core
.NET Core has undergone significant performance

optimizations across its lifecycle, with particular fo-
cus on JIT Compiler improvements and Garbage Col-
lector (GC) enhancements. These efforts have been
crucial in ensuring that .NET Core remains a robust
and efficient framework suitable for a wide range
of applications, from desktop and web applications
to cloud-based services and microservices architec-
tures. The enhancements to the JIT compiler and
garbage collector across the .NET Core versions un-
derscore Microsoft’s commitment to performance,
efficiency, and the modernization of application de-
velopment. [6]

Besides that, performance trajectory of the .NET
Core platform has been marked by continuous ad-
vancements aimed at optimizing startup times, mem-
ory usage, computational efficiency, and ensuring
consistent performance across multiple operating sys-
tems. These enhancements have solidified .NET Core’s
position as a high-performance, efficient framework
suitable for a diverse range of applications.

JIT Compiler Enhancements
•	 Optimized Code Generation:
Across its evolution, .NET Core’s JIT compiler has

continually improved its code generation strategies.
This includes better inlining of methods (where the
code of a called method is inserted into the caller’s
body), which can significantly reduce call overhead
and improve execution speed.

•	 Tiered Compilation:
Introduced and refined over time, tiered compi-

lation helps achieve a balance between fast startup
times and optimized application performance. Ini-
tially, methods are compiled for quick execution, and
as they are identified as frequently used (“hot” meth-
ods), they are recompiled with optimizations.

•	 Dynamic PGO (Profile-Guided Optimization):

June 2024 Journal of Information Technology and Applications 71

JITA 14(2024) 1:69-77	 Branimir Cvijić, Pero Ranilović

Enhanced in later versions, Dynamic PGO utilizes
runtime performance data to optimize code paths,
significantly boosting the efficiency of JIT compila-
tion and overall application performance.

Garbage Collector (GC) Improvements
•	 Efficiency and Throughput:
The GC has been optimized for high efficiency and

throughput, with specific enhancements aimed at re-
ducing pause times. This means applications experi-
ence fewer interruptions for GC, leading to smoother
performance.

•	 Container Support:
As .NET Core embraced containerization, the GC

received optimizations for running in container en-
vironments. This includes scaling to the available re-
sources and constraints within a container, ensuring
applications perform well even in memory-limited
situations.

•	 Concurrent Garbage Collection:
Enhancements to concurrent GC operations have

minimized the impact on application responsiveness.
This allows the GC to reclaim memory in the back-
ground, reducing pauses in the application’s execution

Cross-Platform Performance Consistency
Ensuring consistent performance across diverse

operating systems is a cornerstone of .NET Core’s de-
sign philosophy. The framework’s cross-platform ca-
pabilities are supported by comprehensive optimiza-
tions to the runtime and framework libraries, which
are crucial for optimal performance on Windows,
Linux, and macOS. These enhancements focus on
modularizing system dependencies and improving
access to native APIs, ensuring applications perform
efficiently across all platforms. [7]

Real-World Impact and Benchmarks
Benchmark tests across various versions of .NET

Core consistently demonstrate improvements in
startup times, memory efficiency, and overall perfor-
mance. These enhancements contribute to a more
robust and scalable application performance, meet-
ing and often exceeding modern application perfor-
mance expectations.

This approach to performance optimization not
only maintains .NET Core’s competitiveness but also
anticipates future challenges in software develop-

ment, preparing the platform with advanced capa-
bilities like Blazor for web assembly and .NET MAUI,
and integrating AI tools in .NET 8. These innovations
underscore .NET’s readiness to embrace emerging
technologies and adapt to the evolving landscape of
software development.

Practical Performance Analysis in the .NET
Ecosystem

A. Definition of Benchmarking
Environment
This section focuses on the practical implementa-

tion of performance benchmarking within the .NET
ecosystem. Providing accurate results requires a de-
tailed definition of the hardware and software char-
acteristics used in the benchmarking process. This
segment provides basic information about the hard-
ware and software configuration to enable precise
comparison of performance across different versions
of the .NET framework.

The specification of the laptop used for bench-
marking is as follows:

-- 11th Gen Intel(R) Core(TM) i7-1165G7 @
2.80GHz 2.80 GHz

-- 16GB DDR4 RAM
-- SK Hynix PC711 512GB
-- Windows 10 Pro

In the benchmarking process, three key versions
of the .NET framework were used for performance
comparison. Versions .NET Core 3.1, .NET 6.0, .NET
7.0, and .NET 8.0 were analyzed. Each version was
carefully selected to explore potential performance
differences and any optimizations implemented in
newer versions.

BenchmarkDotNet was used as the benchmarking
tool, widely accepted and recognized tool in the .NET
community for measuring performance. Benchmark-
DotNet provides a flexible and reliable framework
for conducting benchmark tests, enabling automatic
management of many details such as measurement
stability, error handling, and precise result compari-
son. Thanks to its simplicity and power, Benchmark-
DotNet is an ideal tool for performing detailed perfor-
mance analysis in the .NET ecosystem. Benchmark-
DotNet has already been adopted by over 19,100
GitHub projects, including .NET Runtime, .NET Com-
piler, .NET Performance, and many others. [8]

72 Journal of Information Technology and Applications www.jita-au.com

From .NET Core to .NET 8: A Comprehensive Analysis of Performance, Features, and Migration Pathways	 JITA 14(2024) 1:69-77

Benchmarking process included the following steps:
Environment preparation: System configuration

was standardized to ensure test consistency. This
involved setting up appropriate versions of the .NET
framework and ensuring all relevant software and
hardware parameters remained constant throughout
all tests.

Test execution: Each version of the .NET frame-
work was tested using the same set of tests, which in-
cluded various types of loads and scenarios to obtain
a comprehensive performance picture.

Results analysis: Results were collected and ana-
lyzed using BenchmarkDotNet, which provides de-
tailed reports including metrics such as execution time,
memory consumption, and performance stability.

Limitations and potential biases
While the methodology was carefully designed,

there are certain limitations and potential biases to
consider:

Hardware limitations: Performance may vary de-
pending on hardware configuration. Although using
the same system for all tests reduced variability, re-
sults may differ on other systems.

Software variables: Operating system versions,
drivers, and other software components can affect per-
formance. Testing was conducted on Windows 10 Pro,
but different configurations may yield different results.

Benchmarking tool: Although BenchmarkDotNet
is a reliable tool, every benchmarking tool has its
limitations and may introduce certain biases into re-
sults. For example, optimizations specific to Bench-
markDotNet may affect real-world application per-
formance.

External variables: External factors such as back-
ground processes and system state can influence test
results, despite efforts to minimize such influences.

B. Time Comparison of Compute-
Intensive Operations
This section explores the time difference between

the execution of compute-intensive operations, in-
cluding computing SHA256 and MD5 hash values, on
different versions of .NET Framework: .NET Core 3.1,
.NET 6.0, .NET 7.0 and .NET 8.0. The aim is to com-
pare the performance of these operations across dif-
ferent framework versions and identify potential dif-
ferences in speed between them.

SHA256 (Secure Hash Algorithm 256-bit) and
MD5 (Message Digest Algorithm 5) are cryptographic
hash algorithms used to generate unique digital sig-
natures or “hash” values from input data. These algo-
rithms apply mathematical functions to input data to
generate a unique string of bits representing the digi-
tal fingerprint or “hash” of the original data. For test-
ing purposes, a bit array value of 10,000 was used.

Figure 1. MD5 vs SHA256 benchmark code

When the SHA256 or MD5 algorithm is applied to
a dataset, the resulting hash value will be unique for
that dataset. Even the slightest change in the input
data will produce a completely different hash value.

Table 1. Comprehensive overview of the results of execution of
MD5 and SHA256 algorithms on different versions of .NET

Results show that the performance of SHA256 and
MD5 algorithms has improved with each new version
of the .NET framework. The average execution time
of the SHA256 algorithm decreases from .NET 6.0
to .NET 8.0, suggesting continuous performance im-
provement. A similar trend is observed with the MD5
algorithm. However, in all versions of the .NET frame-
work, the SHA256 algorithm demonstrates faster ex-
ecution time compared to the MD5 algorithm. This
indicates superior performance of the SHA256 algo-
rithm in this specific benchmark test.

June 2024 Journal of Information Technology and Applications 73

JITA 14(2024) 1:69-77	 Branimir Cvijić, Pero Ranilović

Graph 1. Comprehensive overview of the results of execution of
MD5 and SHA256 algorithms on different versions of .NET

The standard deviations for both algorithms are
low, suggesting consistent performance and reliable
results. Overall, the results demonstrate a positive
evolution of performance for cryptographic algo-
rithms in the .NET ecosystem over time.

C. Time Comparison of Asynchronous
Operations Execution
In this section of the research, we will focus on

the comparative analysis of executing asynchronous
operations in different versions of the .NET frame-
work. The asynchronous approach enables efficient
management of execution time for operations that
require waiting for I/O operations or processing
long-running tasks. Through this research, we aim to
assess how the performance of asynchronous opera-
tions differs between different versions of the .NET
framework, as well as to identify any improvements
or changes in execution time in newer framework
versions. This is important to understand the impact
of the evolution of the .NET platform on the efficiency
of asynchronous programming and potential oppor-
tunities for optimizing coding.

Benchmark tests represent asynchronous meth-
ods that return different types of data with fixed
values (Figure 2.). Each method returns a unique
data type with its corresponding fixed value, such
as TimeSpan.Zero, DateTime.MinValue, Guid.Empty,
DayOfWeek.Sunday, 0m, 0, 0f, (Half)0f, and (0, 0) for
the value type Tuple. The goal of these tests is to mea-
sure the execution time of asynchronous operations
that return constant values. This approach enables
the assessment of the efficiency of asynchronous ex-
ecution for different data types and can provide in-
sights into performance and potential optimizations
in working with this data in the .NET ecosystem.

Figure 2. Async methods for benchmark

Table 2. Comprehensive overview of the results of execution
async operation

Graph 2. Comprehensive overview of the results of execution
async operation

74 Journal of Information Technology and Applications www.jita-au.com

From .NET Core to .NET 8: A Comprehensive Analysis of Performance, Features, and Migration Pathways	 JITA 14(2024) 1:69-77

By analyzing the obtained results, we can conclude
that the average execution time of asynchronous op-
erations is significantly lower when using the .NET
8.0 version. Let’s compare the execution times of the
ZeroFloat method across different versions of .NET.
When executed on version 8.0, the time obtained was
19.55ns, on version 7.0 it was 53.94ns, on version
6.0 it was 52.36ns, while on version .NET Core 3.1
it was 47.47ns. We see that the difference in time is
significant. The situation is similar with other meth-
ods used in the measurement. ZeroDecimal method
can also be singled out, which had the shortest time
when using .NET 6.0 version - 19.08ns, .NET 7.0 ver-
sion – 59.65ns, .NET 8.0 version – 30.51ns, .NET Core
3.1 – 53.21ns. ZeroDecimal is the method that gave
the longest execution time during measurement us-
ing .NET 8.0.

D. Use of GC advancements in .NET 8
version
In .NET 8, the GC (Garbage Collection) server now

supports a dynamic heap count. In .NET 8, it is gener-
ally off by default but can be enabled by adding the
<GarbageCollectionAdaptationMode>1</Garbage-
CollectionAdaptationMode> property within MS-
Build. The employed algorithm can increase and de-
crease the heap count over time, aiming to maximize
its view of throughput while maintaining a balance
between that and the overall memory footprint. A
scenario demonstrating how the GC operates within
.NET 8 is depicted in Figure 3.

Figure 3. Threads and GC usage code

The example creates a multitude of threads that
continuously allocate, and then repeatedly prints out
the working set of memory. In Figures 4a, b, c and d
we can see the working sets without the GarbageCol-

lectionAdaptationMode property, while in Figure 4e,
the property is set and enabled. There we can observe
a significant decrease in the working set.

 .NET Core 3.1(A) .NET 6 (B) .NET 7 (C)

.NET 8 (D) .NET 8 (E)

Figure 4. Result of execute code (GC)

In conclusion, activating and configuring the Gar-

bageCollectionAdaptationMode property in .NET
8 significantly reduces the working set of memory.
This indicates more efficient memory management
and potentially better application performance, es-
pecially in situations where the number of heaps
dynamically adjusts. Therefore, properly configuring
the GarbageCollectionAdaptationMode property can
contribute to performance optimization and reduce
the resources required for application execution.

Upon analysis of the practical work, it becomes
evident that .NET 8 introduces numerous perfor-
mance enhancements, some of which have not been
thoroughly explored. Further investigation into ad-
ditional practical cases not covered in this study re-
veals significant differences in the utilization of .NET
8 compared to older versions.

E. Limitations of the Study
Scope of Tests: Benchmarking was conducted us-

ing a specific set of tests and scenarios. This means
that certain edge cases or specific workloads that
might impact performance in real-world applica-
tions were not covered. The tests focused on general

June 2024 Journal of Information Technology and Applications 75

JITA 14(2024) 1:69-77	 Branimir Cvijić, Pero Ranilović

performance rather than specific scenarios that may
have different requirements.

Statistical Analysis: The number of test iterations
and variability in the results were controlled, but a
small number of iterations can lead to less reliable
conclusions. Increasing the number of test iterations
could provide more stable and representative perfor-
mance data.

Update Frequency: The .NET framework is regu-
larly updated, which means the tested versions can
quickly become outdated. This can limit the relevance
of the results over time, as newer versions with dif-
ferent performance characteristics are released.

F. Upcoming .NET 9 release
Platform for Cloud-Native Development:
.NET 9 will further improve runtime performance

and application monitoring, making applications
faster and more stable. With .NET Aspire, cloud appli-
cation development becomes less complex and more
cost-effective. Optimizing applications for Native AOT
and trimming will reduce application size and im-
prove execution speed.

Tools for Cloud-Native Development:
Visual Studio and Visual Studio Code will gain

support for Native AOT, enabling developers to more
easily compile and deploy applications across various
platforms. Enhanced integration with Azure Contain-
er Apps will simplify scaling applications and manag-
ing resources in a cloud environment.

Integration with Artificial Intelligence:
.NET 9 will enable developers to more easily inte-

grate AI functionality into their applications through
new libraries and documentation for working with
OpenAI and OSS models. Collaboration on projects
such as Semantic Kernel and Azure SDK will ensure a
rich experience in developing intelligent applications.

Backlog and Future Plans:
The .NET team will regularly update the backlog

and release notes, introducing new features and op-
timizations based on feedback from the community
and industry partners. Ongoing experiments may be-
come part of future releases, ensuring the platform’s
continuous evolution.

Impact on the Broader Software Development
Landscape:

These improvements will increase developer pro-
ductivity, enabling faster development and deploy-
ment of applications. Enhancements in performance
and scalability will result in more efficient and re-
sponsive applications, while advanced security so-
lutions will help protect data and ensure regulatory
compliance. Broader support for cross-platform de-
velopment will lower entry barriers and enable more
developers to use .NET for developing diverse appli-
cations in various environments.

G. Potential for Further Research
Long-term Performance: Additional research that

includes long-term performance and stability of dif-
ferent .NET framework versions could provide deep-
er insights into the efficiency and reliability of the
platform.

Real-world Scenarios: Including case studies from
the real world and various industrial applications can
help understand how specific features and improve-
ments impact performance in real conditions.

Comparative Analysis: Further research that in-
cludes comparisons with other development plat-
forms and languages can provide a broader context
and help assess the relative advantages and disad-
vantages of the .NET ecosystem.

Conclusion
The journey from .NET Core to .NET 8 represents

a remarkable chapter in the evolution of the .NET
ecosystem, marked by significant advancements in
performance, a broadening of features, and the sim-
plification of migration pathways for developers.
Through the analysis of performance improvements,
feature enhancements, and migration considerations,
this paper has illuminated the strategic and techno-
logical evolution that has taken place within the .NET
framework, culminating in the release of .NET 8.

.NET Core 3.1 laid the groundwork with its robust
foundation, setting a high standard for performance
and reliability. From there, each subsequent version
of .NET has introduced enhancements and new ca-
pabilities, demonstrating Microsoft’s commitment to
innovation and its responsiveness to the needs of the
development community. The integration of AI and
machine learning capabilities in .NET 8 is particularly

76 Journal of Information Technology and Applications www.jita-au.com

from .net core to .net 8: a comprehenSIVe analySIS of performance, featureS, and mIgratIon pathwayS JITA 14(2024) 1:69-77

notable, signaling a forward-looking approach to ap-
plication development.

Looking ahead, the upcoming release of .NET 9
promises to continue this trajectory of innovation.
With the .NET ecosystem now firmly established as a
unified platform, future versions are poised to delve
deeper into the realms of AI, machine learning, and
other cutting-edge technologies. The emphasis on
performance optimization, feature richness, and ease
of migration will undoubtedly remain central, ensur-
ing that .NET continues to be a leading framework for
developers worldwide.

In conclusion, the transition from .NET Core to
.NET 8 and beyond exemplifies the dynamic and
evolving nature of the .NET ecosystem. This evolu-
tion reflects a broader trend in software development
towards more efficient, flexible, and intelligent solu-
tions. As the .NET framework continues to advance,
it will undoubtedly play a pivotal role in shaping the
future of software development, empowering devel-
opers to create innovative applications that address
the complex challenges of the digital age.

References
[1] Microsoft. (2016). Introducing .NET Core. .NET Blog.

Accessed April 15, 2024. [Online]. Available: https://
devblogs.microsoft.com/dotnet/introducing-net-core/

[2] Microsoft. (2019). “Announcing .NET Core 3.1”. Accessed
April 18, 2024. [Online]. Available: https://devblogs.mi-
crosoft.com/dotnet/announcing-net-core-3-1/.

[3] Microsoft. (2019). “Performance improvements in .NET
Core 3.1”. Accessed April 18, 2024. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/core/whats-
new/dotnet-core-3-1.

[4] Microsoft. (2020). “The journey to one .NET”. Accessed
April 18, 2024. [Online]. Available: https://devblogs.mi-
crosoft.com/dotnet/the-journey-to-one-net/.

[5] Microsoft. (2022). “Machine Learning with ML.NET”. Ac-
cessed April 20, 2024. [Online]. Available: https://dotnet.
microsoft.com/en-us/apps/machinelearning-ai/ml-dot-
net.

[6] Microsoft. (2021). “Performance improvements in .NET
6”. Accessed April 18, 2024. [Online]. Available: https://
docs.microsoft.com/en-us/dotnet/core/whats-new/dot-
net-6.

[7] Microsoft. (2021). “Performance best practices with ASP.
NET Core”. Accessed April 18, 2024. [Online]. Available:
https://docs.microsoft.com/en-us/aspnet/core/perfor-
mance/performance-best-practices.

[8] BenchmarkDotNet. “Home - BenchmarkDotNet Docu-
mentation.” BenchmarkDotNet, Accessed March 24, 2024.
[Online]. Available: https://benchmarkdotnet.org/.

[9] Akinshin, A. (2018). “Pro .NET Benchmarking: The Art of
Performance Measurement.” Apress.

[10] Roth, D., & Price, M. J. (2018). “Migrating to .NET Core: Re-
building Enterprise Applications.” Apress.

Received: May 13, 2024
Accepted: May 24, 2024

For citation
Branimir Cvijić, Pero Ranilović, From .NET Core to .NET 8: A Comprehensive Analysis of Performance, Features, and Migration
Pathways, JITA – Journal of Information Technology and Applications, Banja Luka, Pan-Europien University APEIRON, Banja Luka,
Republika Srpska, Bosna i Hercegovina, JITA 14(2024)1:69-77, (UDC: 004.432.2C#:004.738-.1), (DOI: 10.7251/JIT2401069C, Vol-
ume 14, Number 1, Banja Luka, June (1-88), ISSN 2232-9625 (print), ISSN 2233-0194 (online), UDC 004

About the authors
Branimir Cvijić received the B.Sc. and M.Sc.
degrees in computer engineering and in-
formatics from the University of Banja Luka
(Banja Luka, Bosnia and Herzegovina) in
2009 and 2014, respectively. He worked in
Lanaco d.o.o, Banja Luka, as senior software
architect from 2009 to 2021. Since 2021
works in Endava as Software development

consultant - Development lead. His specialisation is in software
and databases development using enterprise tools. His research
interests are Internet of things using enterprise tools for devel-
opment and integration in different areas of industry.

Pero Ranilović was born in the city of Prije-
dor (Republic of Srpska, BiH). Graduated from
high school in Novi Grad. Bachelor’s degree
in Programming and Software Engineering
earned at the Faculty of Information Technol-
ogy at Pan-European University “APEIRON” in
Banja Luka.
Master’s degree pursued at the Faculty of In-

formation Technology at Pan-European University “APEIRON”
in Banja Luka. Since 2018, he has been employed as a software
developer at Lanaco. Employed as a software developer in La-
naco, since 2018. In addition, hired as a teaching assistant at
Pan-European University “APEIRON”.

June 2024 Journal of Information Technology and Applications 77

