
ENERGY EFFICIENCY AS A NEW PARADIGM IN SOFTWARE ENGINEERING JITA 15(2025) 1:45-54

EÄ�Ù¦ù E¥¥®�®�Ä�ù �Ý � N�ó P�Ù��®¦Ã ®Ä SÊ¥ãó�Ù�
EÄ¦®Ä��Ù®Ä¦

Pero Ranilović, Dražen Marinković
Pan-European University “Apeiron”, Banja Luka, RS, BiH

{pero.d.ranilovic, drazen.m.marinkovic }@apeiron-edu.eu

Review paper
https://doi.org/10.7251/JIT2501045R UDC: 004.41:004.738.5

Abstract: This paper presents a comprehensive overview of energy efϐiciency as a modern engineering paradigm in software
development. With growing demands on digital infrastructure and increasing energy consumption in information and
communication technologies (ICT), optimizing software for energy performance has become a key quality requirement—alongside
scalability, performance, and security. Drawing from international standards (such as ISO/IEC 25010), sustainability frameworks
(e.g., Green Software Foundation), and relevant scientiϐic literature, the paper analyzes how architectural choices, programming
languages, software practices, and toolchains inϐluence energy usage. It further highlights good engineering practices, comparative
language benchmarks, and the integration of energy awareness into modern development workϐlows, such as DevOps and CI/
CD pipelines. The aim is to raise awareness among software engineers and decision-makers about the importance of sustainable
software design and to offer practical guidelines for building energy-conscious systems.

Keywords: CI/CD, DevOps, energy-efϐicient software, green software foundation, ISO/IEC 25010, programming languages,
performance optimization, sustainable software engineering

IÄãÙÊ�ç�ã®ÊÄ
In the past decade, we have witnessed a signiϐicant

increase in energy consumption within the ϐield of
information and communication technologies (ICT),
driven by the rising use of mobile devices, data cen-
ters, smart systems, and the Internet of Things (IoT).
Although hardware has become notably more ener-
gy-efϐicient, the overall energy consumption contin-
ues to grow—partly because software is still not de-
signed with energy efϐiciency as a core principle. This
phenomenon is known as the “rebound effect,” where
gains achieved in hardware efϐiciency are offset by
increased demands placed on software systems [1].

Today, software not only governs the functionality
of systems but also determines how energy is con-
sumed across all layers of a system. Consequently,
there is an emerging need for energy efϐiciency to be
treated not as a secondary concern, but as a funda-
mental non-functional requirement of modern soft-
ware—on par with security, scalability, and perfor-
mance[2].

According to the ISO/IEC 25010 international
standard, energy efϐiciency is deϐined as one of the
sub-characteristics of performance efϐiciency in
software. This requirement implies that the system
should use a minimal amount of resources (including
energy) to achieve the required functionality [3]. In
this context, energy efϐiciency is not optional—it is an
integrated component of overall software quality.

An increasing number of organizations and insti-
tutions, including the Green Software Foundation and
IEEE, are advocating for the integration of energy op-
timization measures from the earliest stages of soft-
ware development [4].

The aim of this paper is to provide a compre-
hensive overview of energy efϐiciency as a modern
engineering paradigm in software development,
drawing on relevant expert literature, technical
standards, and current engineering practices. In ad-
dition, the paper includes selected analyses from
contemporary scientiϐic research to further support
its conclusions.

June 2025 Journal of Information Technology and Applications 45

JITA 15(2025) 1:45-54 PERO RANILOVIĆ, ET AL.

The structure of the paper follows a logical pro-
gression—from deϐining theoretical and regulatory
frameworks, through technical factors inϐluencing
energy consumption, to an analysis of tools, pro-
gramming languages, and engineering practices that
contribute to the development of energy-conscious
software.

Standards and Theoretical Frameworks for
Energy-Efϐicient Software
One of the foundational documents for deϐining

software quality is the international standard ISO/
IEC 25010:2011, which explicitly includes energy
efϐiciency as a key subcharacteristic of performance
efϐiciency, alongside system responsiveness and
resource utilization[3]. According to the standard,
energy efϐiciency refers to the degree to which a
software product uses appropriate amounts of re-
sources relative to the performance it delivers. This
implies that efϐicient software should fulϐill its func-
tions while minimizing energy consumption—an
especially important requirement in environments
with limited computational capacity, such as em-
bedded systems, mobile devices, and wireless sen-
sor networks.

In addition to ISO standards, the ϐield of ener-
gy-aware computing has seen increasing support
through technical initiatives and environmental reg-
ulations. Notable among these are the IEEE 1680.1
and 1680.2 standards, which address the environ-
mental performance of electronic products, includ-
ing software bundled with hardware (e.g., ϐirmware,
drivers). These standards provide guidance for eval-
uating the energy and environmental impact across
the lifecycle of IT products [1] .

A more recent and inϐluential initiative is the Green
Software Foundation, which advocates for sustain-
able software engineering practices. Their principles
emphasize energy measurability, design efϐiciency,
data minimization, and climate impact awareness in
software decision-making [4]. These concepts aim to
embed sustainability into every phase of the software
lifecycle—from design to deployment.

These efforts are further supported by global pol-
icy frameworks, such as the United Nations Sus-
tainable Development Goals (SDGs), particularly
SDG 9 (Industry, Innovation and Infrastructure) and
SDG 12 (Responsible Consumption and Production),

which call for technological innovation aligned with
environmental limits [2].

The concept of sustainability is now increasingly
integrated into software engineering not only as a
social responsibility but also as a strategic design
objective. This is best exempliϐied in the growing
adoption of ESG (Environmental, Social, and Gov-
ernance) frameworks across the tech sector, where
energy-efϐicient software contributes directly to
the environmental pillar. Recent studies highlight
how responsible AI, cloud infrastructure, and IoT
systems are reshaping how developers incorporate
energy considerations into software design from the
outset [2].

As these frameworks and standards become em-
bedded into standard development workϐlows, en-
ergy efϐiciency is no longer a feature of innova-
tion—it is a requirement of modern engineering
responsibility.

Factors Inϐluencing Energy Consumption in
Software Systems
Understanding what drives energy consumption

in software systems is essential for engineers striv-
ing to build sustainable and resource-conscious so-
lutions. Multiple interdependent factors shape how
much energy is consumed—from system architec-
ture and algorithm design to programming language,
memory usage, and I/O behavior. Addressing these
factors in a systematic way can substantially reduce
the energy footprint of software.

One of the most fundamental inϐluences lies in the
software architecture. The decision between mono-
lithic, microservice-based, or event-driven models
has direct implications for energy use. Modular archi-
tectures often enable components to be independent-
ly paused or shut down during periods of low activity,
thereby conserving power. However, microservices,
while scalable and maintainable, introduce signiϐi-
cant communication overhead, especially in distrib-
uted systems, leading to increased network trafϐic
and energy usage [5].

Algorithmic efϐiciency is another central deter-
minant. Efϐicient algorithms reduce the number of
instructions executed by the processor, limiting both
CPU cycles and memory accesses—two operations
with high energy cost. For example, replacing linear
search with binary search, or opting for a heap over

46 Journal of Information Technology and Applications www.jita-au.com

ENERGY EFFICIENCY AS A NEW PARADIGM IN SOFTWARE ENGINEERING JITA 15(2025) 1:45-54

a simple list when managing priority queues, signiϐi-
cantly improves energy use. Memory-aware designs,
such as tiling in matrix operations or optimized cach-
ing, have also been shown to cut energy costs across
scientiϐic workloads [7].

The programming language used in a project
also plays a notable role. A well-known study by
Pereira et al. (2017) compared 27 programming lan-
guages across ten standard algorithms, measuring
execution time, memory use, and energy consump-
tion. The study revealed that compiled, low-level
languages like C and Rust consistently outperform
interpreted languages like Python and JavaScript
in terms of energy efϐiciency [6]. This is due to lower
abstraction layers, reduced runtime overhead, and
more granular memory control.

Functional programming languages (e.g., Haskell,
Erlang) offer beneϐits in concurrency but may incur
higher memory use due to immutable data struc-
tures. Therefore, the paradigm must align with the
performance and energy proϐile of the application
domain.

Among the most overlooked yet impactful con-
tributors to energy waste are input/output opera-
tions and memory access patterns. File reads and
writes, frequent memory allocations, and repeated
network calls can drastically inϐlate energy costs. For
example, making uncached HTTP requests in a loop
or executing poorly batched database queries can
more than double energy use compared to optimized
versions [5].

Additionally, metrics like cache hits/misses,
context switches, and CPU migrations have been
shown to correlate strongly with energy consump-
tion in empirical studies across multiple workloads.
These metrics should therefore be monitored as part
of any serious energy proϐiling effort.

In sum, optimizing for energy efϐiciency involves
careful selection of architecture, algorithm, language,
and system-level operations. Each design decision
reverberates through the energy consumption chain,
and only a holistic view can ensure effective improve-
ments.

Good Engineering Practices for Energy-
Efϐicient Development
Energy efϐiciency in software is not achieved by

accident—it is the result of deliberate and thoughtful

engineering practices. From the earliest design stages
to deployment and testing, integrating sustainability-
oriented strategies can signiϐicantly reduce the total
energy consumption of software systems. As with
performance and scalability, addressing energy use is
most effective when it is embedded from the begin-
ning of the development lifecycle.

Several well-established design principles have a
particularly strong impact on reducing energy waste:

• Minimizing complexity: Simpliϐied, clean
code and well-structured logic reduce the com-
putational overhead required for program exe-
cution. Reducing nested loops, redundant con-
ditions, and unnecessary abstractions allows
the processor to complete tasks with fewer
operations and lower power demand.

• Modularity: Dividing software into smaller,
independent modules enables more efϐicient
control over component execution. Modules
not currently in use can be unloaded or deac-
tivated, particularly in mobile and embedded
systems, thereby reducing background energy
draw.

• Data locality: Ensuring that data is kept close
to where it is processed (e.g., within the same
memory hierarchy level or server node) signiϐi-
cantly reduces the need for resource-expensive
memory accesses and network requests. This
practice not only reduces latency but also en-
ergy costs tied to I/O and communication op-
erations [5].

• Avoiding unnecessary computation: Repeti-
tive function calls, redundant loops, polling
mechanisms without delays, and repeated data
loading are common sources of waste. Optimiz-
ing these patterns—by introducing caching,
memoization, and lazy evaluation—can lead
to substantial reductions in CPU activity and
memory usage.

Although these principles are not new, they are
deeply rooted in software craftsmanship values. For
instance, the well-known book Clean Code by Robert
C. Martin emphasizes clarity, modularity, and sim-
plicity—not with energy in mind, but for maintain-
ability and robustness. Yet, their implementation
naturally supports energy efϐiciency as a beneϐicial
side effect [8].

June 2025 Journal of Information Technology and Applications 47

JITA 15(2025) 1:45-54 PERO RANILOVIĆ, ET AL.

Beyond good design, developers should be equally
vigilant about eliminating anti-patterns—common
but inefϐicient coding practices that contribute to un-
necessary energy use. These include:

• Repetitive execution of logic within tight loops,
especially when the logic can be precomputed
or simpliϐied;

• Repeatedly opening and closing ϐiles or data-
base connections instead of reusing persistent
sessions;

• Memory mismanagement, such as allowing ob-
ject bloat or failing to deallocate unused mem-
ory, which leads to more frequent garbage col-
lection and higher RAM usage.

Modern development environments offer pow-
erful tools for detecting and addressing such inef-
ϐiciencies. Static code analyzers (e.g., SonarQube,
Pylint) and proϐiling tools (e.g., GreenScaler for Java,
Intel VTune, VisualVM) allow developers to identify
bottlenecks and measure how different segments of
the code contribute to CPU usage, memory allocation,
and energy drain [6].

Practical Examples of Energy-Aware
Engineering
Research from the Green Software Laboratory

and ϐield studies [4] have identiϐied several coding
strategies that consistently reduce software energy
consumption. These are summarized in the table 1
below:

Table 1. Summary of Key Coding Practices for Energy-Efϔicient
Software Development

PracƟ ce DescripƟ on

Effi cient algorithm selecƟ on
Replace costly operaƟ ons (e.g., Bubble
Sort) with opƟ mized versions (e.g., Quick
Sort).

Caching of results Store computaƟ on results to prevent
repeated expensive operaƟ ons.

Lazy loading of components Load modules or libraries only when
they are actually required.

Data compression before
transmission

Reduce data size before network transfer
to lower bandwidth and CPU use.

EliminaƟ on of “busy wait”
loops

Avoid while(true) loops that consume
CPU without producƟ ve work.

Load-aware system scaling Enable systems to downscale energy
usage when demand is low.

Implementing these practices doesn’t necessarily
require a shift in tooling or technology stack. In many
cases, teams can begin by including energy-related
checks in code reviews, deϐining internal guidelines
that promote resource awareness, and using proϐiling
data as part of standard QA procedures.

By embedding such practices into development
culture, teams not only improve performance but
also directly contribute to the global effort of reduc-
ing the carbon footprint of digital infrastructure.

Comparative Analysis of Programming
Languages in Terms of Energy Efϐiciency
Programming languages vary signiϐicantly in their

energy efϐiciency, which depends not only on how
code is written but also on how it is compiled, execut-
ed, and optimized. Key factors include the language’s
execution model (compiled vs. interpreted), memory
management behavior, and compiler performance.
When developing software for energy-constrained
platforms—such as embedded systems, mobile de-
vices, or large-scale servers—choosing the right pro-
gramming language can substantially inϐluence the
overall energy footprint of an application.

Empirical Measurements of Energy
Consumption by Language
One of the most comprehensive studies in this

area is the work by Pereira et al. (2017), which ana-
lyzed 27 programming languages across ten common
algorithmic tasks. The study measured execution
time, memory usage, and energy consumption[6].

Table 2. Comparative Analysis of Energy Efϔiciency, Execution
Speed, and Memory Usage Across Programming Languages

Language Energy ConsumpƟ on ExecuƟ on
Speed

Memory
Usage

C Lowest Fastest Low

Rust Very low Fast Low

Java Medium Moderate High (GC
overhead)

Python High Slow Moderate

JavaScript High Slow Moderate
Source: Pereira et al., 2017

These ϐindings suggest that compiled, low-level
languages like C and Rust are far superior in ener-
gy-critical applications (Table 2). C, due to its mini-
mal runtime overhead and direct hardware access,

48 Journal of Information Technology and Applications www.jita-au.com

ENERGY EFFICIENCY AS A NEW PARADIGM IN SOFTWARE ENGINEERING JITA 15(2025) 1:45-54

consistently ranks highest for efϐiciency. Rust, while
higher-level and type-safe, still achieves near-C per-
formance due to its powerful compiler optimizations
and memory safety features without garbage collec-
tion.

Languages such as Java and C# strike a balance by
offering higher developer productivity through man-
aged runtime environments. However, their memory
usage tends to be higher, especially in long-lived ap-
plications where garbage collection processes intro-
duce unpredictable spikes in CPU and memory activ-
ity [11].

In contrast, interpreted languages like Python and
JavaScript perform the worst in terms of energy efϐi-
ciency. Their dynamic typing, runtime interpretation,
and rich—but heavy—standard libraries result in
both slower execution and greater energy consump-
tion [10].

Programming Paradigms and Their Energy
Proϐiles
Besides language choice, the programming para-

digm plays a vital role in determining energy be-
havior. Imperative languages such as C and Go allow
ϐine-grained control over memory and computation,
leading to predictable and efϐicient execution paths.
Functional languages, such as Haskell or Erlang, often
favor immutability and recursion, which can increase
memory usage and stack depth—resulting in higher
energy consumption unless carefully optimized [9].

Compiler behavior is also critical. For instance,
enabling or disabling speciϐic compiler optimizations
can have a dramatic impact on energy consumption.
In the case of Haskell, Kirkeby et al. (2024) found that
disabling just a few of the Glasgow Haskell Compiler
(GHC) optimizations led to signiϐicantly less efϐicient
executables, both in terms of time and energy. There-
fore, compiler conϐiguration must be considered as
part of language energy proϐiling—not all compilers
are equal, and settings such as -O2 or -fno-* ϐlags di-
rectly inϐluence energy outcomes.

Furthermore, the compilation process itself—how
and when code is translated—matters. Interpreted
code or just-in-time compiled (JIT) code (like PyPy
for Python) often leads to higher startup costs and
runtime overhead, though dynamic recompilation
techniques are improving these deϐicits over time
[12].

Practical Implications for Language Selection
When selecting a language for an energy-sensitive

system, developers must weigh several factors:
• Execution duration and frequency: For applica-

tions that run continuously (e.g., backend ser-
vices), using efϐicient compiled languages (like
C or Rust) can signiϐicantly reduce operational
costs and environmental impact.

• Platform limitations: On devices with strict
energy budgets (e.g., IoT sensors), interpreted
languages are often unsuitable.

• Development priorities: In scenarios where
rapid prototyping is more valuable than run-
time efϐiciency, interpreted or semi-compiled
languages may still be acceptable.

Nevertheless, energy efϐiciency should increasing-
ly be considered a ϐirst-class requirement in system
design. Balancing development speed with sustain-
able execution is becoming a deϐining challenge of
modern software engineering.

Tools and Techniques for Measuring Energy
Efϐiciency in Software
Measurability is the foundation of every meaning-

ful optimization. In the context of energy-efϐicient
software engineering, understanding how and where
software consumes energy is critical for making in-
formed design and development decisions. While en-
ergy consumption has traditionally been associated
with hardware, today a broad ecosystem of tools and
techniques is available to help engineers quantify and
optimize the energy footprint of software—from the
earliest coding stages to full deployment.

Some tools rely on direct hardware-based mea-
surement using embedded sensors. For example, In-
tel Power Gadget enables precise monitoring of CPU
energy use in real time on Intel platforms. These tools
offer high measurement accuracy but are limited to
speciϐic hardware architectures, reducing their por-
tability and broader applicability.

In addition to hardware-based tools, dynamic pro-
ϐiling solutions have become increasingly popular
for capturing real-time energy behavior of software
during execution. A notable example is GreenScaler,
which automatically generates test cases to construct
energy models of applications. This proϐiler helps
developers detect energy regressions between soft-

June 2025 Journal of Information Technology and Applications 49

JITA 15(2025) 1:45-54 PERO RANILOVIĆ, ET AL.

ware versions and is especially useful in mobile or
resource-constrained environments [13].

For embedded systems and IoT applications, where
energy is a critical constraint, static analysis tools pro-
vide a different type of insight. These tools estimate en-
ergy consumption by analyzing the program’s control
ϐlow and logic without needing to execute the code. For
instance, EnergyAnalyzer, developed under the Eu-
ropean TeamPlay project, uses worst-case execution
time (WCET) techniques to estimate the energy cost
of software components. This helps developers iden-
tify energy hotspots early in development, potentially
even before full implementation[14].

Another line of work is focused on static energy
modeling at the source-code level. Research by Haj-
Yihia and Ben-Asher (2017) demonstrates how
symbolic execution and path analysis can be used to
predict energy usage across various CPU architec-
tures. Their approach includes modeling memory us-
age and cache behavior, which are critical for accurate
estimation of total energy cost [15]. While technically
demanding, such tools offer valuable guidance during
code optimization and compilation.

More and more organizations are integrating
these tools into their CI/CD workϐlows. By tracking
energy metrics along with traditional KPIs like per-
formance and security, energy efϐiciency becomes an
embedded part of quality assurance. For example,
GreenScaler can ϐlag inefϐicient changes in new code
commits, while static analysis tools help developers
conϐigure compilers or detect early inefϐiciencies.

Despite this progress, several challenges remain.
Many tools are platform-speciϐic and rely on non-
standard metrics, making cross-platform comparison
difϐicult. Furthermore, most solutions focus exclu-
sively on CPU consumption, neglecting other critical
components such as GPUs, memory buses, and net-
work cards.

Looking ahead, the development of hybrid tools
that combine static and dynamic analysis, along with
standardized models for energy reporting, will be es-
sential. Such advancements would not only improve
precision but also allow engineers to compare results
across platforms and programming environments.

Ultimately, the ability to measure energy use in
software is no longer a luxury—it is a professional
necessity. Engineers equipped with the tools and
knowledge to assess their code’s energy impact are

better positioned to make sustainable, efϐicient, and
forward-thinking design decisions in the digital age.

Integrating Energy Efϐiciency into the
Software Development Lifecycle
As the awareness of sustainable engineering

grows, software energy efϐiciency must be embedded
not only in the product but also in the process. The
integration of energy metrics into the software de-
velopment lifecycle (SDLC) is becoming an emerging
best practice, particularly within Agile and DevOps
frameworks.

Modern development teams rely heavily on Con-
tinuous Integration and Continuous Delivery (CI/
CD) pipelines to automate software testing and de-
ployment. These automated pipelines are now evolv-
ing to include energy proϐiling and optimization
checkpoints. By integrating tools like GreenScaler
and static energy analyzers into CI/CD, teams can
continuously track and optimize energy usage during
software builds and releases [16].

This integration doesn’t stop at tooling. Some or-
ganizations have begun deϐining “green” acceptance
criteria as part of Agile user stories, ensuring that
new features must meet both functional and energy
efϐiciency requirements. This cultural shift promotes
shared ownership of sustainability goals, aligning
developers, testers, and operations teams under the
same value system [17].

From a strategic standpoint, the most effective
teams embed energy-awareness into three stages:

1. Pre-development planning: Estimating the
energy cost of alternative implementation
paths and choosing the most efϐicient.

2. Development and testing: Using proϐilers and
simulators to test energy consumption during
code changes.

3. Post-deployment monitoring: Logging real-
time energy metrics to dashboards, much like
performance logs or error tracking.

Some DevOps pipelines now include feedback
loops where energy regressions trigger alerts,
just like failing tests. In one case study, applying this
principle led to a 22% reduction in overall cloud in-
frastructure costs simply by removing a memory-
intensive module that previously went unnoticed in
traditional code reviews [18].

50 Journal of Information Technology and Applications www.jita-au.com

ENERGY EFFICIENCY AS A NEW PARADIGM IN SOFTWARE ENGINEERING JITA 15(2025) 1:45-54

Organizations are also increasingly integrating
energy analysis into code quality dashboards, using
metrics such as energy per transaction, energy per
test suite, and deployment energy impact. These in-
dicators provide clarity and accountability, enabling
software teams to monitor their impact over time
without disrupting their existing workϐlows [19].

Adopting energy-conscious practices within
SDLC not only reduces environmental impact but
also optimizes performance, infrastructure utiliza-
tion, and cost. As tooling and awareness continue
to mature, integrating energy metrics into Agile and
DevOps processes is transitioning from a novelty to
a necessity.

 Experimental Validation of Energy-Efϐicient
Coding Practices in .NET
To support the theoretical ϐindings and recom-

mendations outlined in this paper, a series of simple
experiments were conducted using the .NET platform
(C# language) in a local development environment.
The goal was to observe and compare CPU resource
utilization and execution time for different software
operations. This practical component aimed to dem-
onstrate how various implementation choices—par-
ticularly algorithm efϐiciency, I/O operations, and par-
allelization strategies—can inϐluence energy-related
metrics, even in small-scale desktop applications.

The rationale for measuring CPU usage stems
from the fact that processor time is one of the most
energy-intensive resources in computing systems.
By monitoring CPU load during execution of selected
methods, we obtain a proxy for energy consumption.
Although these experiments do not measure energy
in joules, they provide meaningful insights into com-
putational efϐiciency, which strongly correlates with
energy use in real-world scenarios. The implemen-
tation of the measurement logic is shown in Figure
1, where part of the source code demonstrates the
usage of the Stopwatch class for execution time and
the TotalProcessorTime property for calculating CPU
usage. The testing was performed on a personal com-
puter equipped with the following speciϐications:

• Processor: 11th Gen Intel(R) Core(TM) i7-
1165G7 @ 2.80GHz

• RAM: 16 GB
• Operating System: Windows 10
• Development Framework: .NET 8 (C#)

The testing was done using the Stopwatch class
from the System.Diagnostics namespace to measure
execution time, and the TotalProcessorTime property
from the current process to calculate CPU usage per-
centage (Figure 1). The measurements included:

• Algorithm comparison: A naïve implemen-
tation of the Bubble Sort algorithm was com-
pared with the optimized built-in Array.Sort()
method on arrays of 100,000 elements.

• I/O operations: Two standard methods for
reading large text ϐiles were compared — File.
ReadAllLines() vs. File.ReadLines() — to as-
sess how different memory-loading strategies
affect performance.

• Parallel vs. serial execution: LINQ-based data
processing was executed in both serial and Par-
allel.ForEach conϐigurations to investigate the
tradeoff between parallelism and CPU usage.

Figure 1. Part of source Code for Experimental Measurements

These experiments, though relatively simple and
time-limited, were chosen to illustrate the real im-
pact of code design decisions on resource consump-
tion. They were executed under consistent conditions
and without background processes, ensuring reliabil-
ity of the results. The summarized results of all tests
are presented in Table 3, showing both CPU usage
percentage and execution time for each operation.
Additionally, Graph 1 visualizes CPU usage by opera-
tion type, with color-coded categories to emphasize
differences across algorithmic, I/O, and data process-
ing domains.

June 2025 Journal of Information Technology and Applications 51

JITA 15(2025) 1:45-54 PERO RANILOVIĆ, ET AL.

These ϐindings clearly demonstrate that more “op-
timized” or built-in solutions tend to consume fewer
resources, while parallel execution, although poten-
tially faster in theory, may introduce overheads that
reduce energy efϐiciency for moderate workloads.
The experiments underscore the importance of per-
formance-conscious design choices and support the
thesis that energy efϐiciency should be considered a
core concern in everyday software development. The
results were systematically recorded and summa-
rized in the following table:

Table 3. Comparative Analysis of Energy Efϔiciency, Execution
Speed, and Memory Usage Across Programming Languages

OperaƟ on CPU Usage (%) Time (ms)

Bubble Sort (100,000 items) 12.35% 42,434

Array.Sort (100,000 items) 10.45% 7

File.ReadAllLines (100,000) 11.49% 16

File.ReadLines (100,000) 8.03% 24

Serial LINQ Processing 10.93% 35.74

Parallel LINQ Processing 34.50% 101.89

Graph 1. CPU Usage by Operation

These experimental results, although limited in
scope, offer compelling validation for the theoreti-
cal principles discussed throughout the paper. They
highlight how even basic implementation choices can
substantially affect CPU utilization and performance.
Integrating such lightweight measurement strategies
into standard development workϐlows can help teams
build more energy-conscious software without requir-
ing complex infrastructure or tools. Future research and
practice should focus on expanding this methodology
with more precise energy metering tools and broader
test coverage across different platforms and workloads.

CÊÄ�½çÝ®ÊÄ
The integration of energy efϐiciency into software

engineering marks a signiϐicant evolution in how
digital systems are conceived, developed, and main-
tained. No longer relegated to low-level hardware
concerns or experimental projects, energy-aware
programming has become a critical aspect of respon-
sible, modern software development. As demonstrat-
ed in this paper, energy efϐiciency must be treated as
a ϐirst-class non-functional requirement—alongside
performance, scalability, and security—especially as
computing ecosystems grow increasingly complex
and resource-intensive.

Global standards such as ISO/IEC 25010 and ini-
tiatives like the Green Software Foundation have laid
a strong foundation for embedding sustainability
into engineering processes (ISO/IEC 25010, 2011),
(Green Software Foundation, 2022). Software design
choices—from programming languages and data
structures to CI/CD pipeline conϐigurations—play a
decisive role in shaping the energy proϐile of applica-
tions. Moreover, empirical studies have underscored
the tangible impact that these decisions have on re-
source consumption across different execution envi-
ronments [6].

Despite promising advances, several challenges
remain. Tooling for real-time and ϐine-grained energy
measurement is still fragmented and not yet stan-
dardized across platforms. Educational curricula have
yet to fully integrate sustainable software practices,
leaving a knowledge gap among new developers. In-
dustry adoption is also uneven—particularly among
small and medium-sized enterprises (SMEs)—due to
the perceived overhead of incorporating energy met-
rics into workϐlows [20].

Looking forward, future research and practice
should aim to address these gaps through:

• Standardized tooling: Developing cross-plat-
form tools and APIs for measuring and visual-
izing energy usage in a consistent and vendor-
neutral way.

• Developer education: Introducing energy-
aware programming as a core module in soft-
ware engineering education, supported by in-
teractive labs and gamiϐied challenges.

• Policy integration: Encouraging government
and enterprise procurement policies to priori-
tize energy-aware software products.

52 Journal of Information Technology and Applications www.jita-au.com

ENERGY EFFICIENCY AS A NEW PARADIGM IN SOFTWARE ENGINEERING JITA 15(2025) 1:45-54

• Holistic frameworks: Building uniϐied models
that integrate energy metrics into quality as-
surance, compliance, and continuous integra-
tion pipelines[18].

A simple experimental case study presented in
this paper has further illustrated how basic code-lev-
el decisions—such as algorithm choice, ϐile handling,
or parallelization—can lead to measurable differenc-
es in CPU usage and execution time, reinforcing the
importance of energy-conscious design.

The road to widespread adoption of energy-aware
software engineering will require continued collabo-
ration across academia, industry, and policy makers.
However, the potential beneϐits—both ecological
and economic—make this a worthy and necessary
pursuit. Energy-efϐicient software is not only about
conserving watts; it’s about building a more sustain-
able digital future. It is also important to note that
the availability of high-quality research on this topic
remains limited, and future studies should focus on
developing standardized methodologies and tools for
measuring software energy efϐiciency.

R�¥�Ù�Ä��Ý
[1] G rosskop, K., & Visser, J. (2013). Energy Efϐiciency Optimi-

zation of Application Software. Advances in Computers, 88,
199–241.

[2] L ee, S. U., Fernando, N., Lee, K., & Schneider, J.-G. (2024). A
Survey of Energy Concerns for Software Engineering. Jour-
nal of Systems and Software, 210, 111944.

[3] Trichkova-Kashamova, E. (2021). Applying the ISO/IEC
25010 Quality Models. 2021 12th National Conference
(ELECTRONICA).

[4] Qiang, Y., Che Pa, N., & Ismail, R. (2024). Sustainable Soft-
ware Solutions: A Tool Integrating Life Cycle Analysis and
ISO Quality Models. International Journal on Advanced Sci-
ence, Engineering and Information Technology.

[5] R ajan, A., Noureddine, A., & Stratis, P. (2016). A Study on the
Inϐluence of Software and Hardware Features on Program
Energy. ESEM 2016.

[6] P ereira, R., Couto, M., Ribeiro, B., & Saraiva, J. (2017). En-
ergy Efϐiciency Across Programming Languages. ACM SIG-
PLAN Conference on Software Language Engineering.

[7] L opes, G. (2019). A Study on the Energy Efϐiciency of Matrix
Transposition Algorithms.

[8] M artin, R. C. (2008). Clean Code: A Handbook of Agile Soft-
ware Craftsmanship. Prentice Hall.

[9] Kirkeby, M. H., Santos, B., Fernandes, J. P., & Pardo, A. (2024).
Compiling Haskell for Energy Efϐiciency: Empirical Analy-
sis of Individual Transformations. Proceedings of the 39th
ACM/SIGAPP Symposium on Applied Computing.

[10] G eorgiou, S., Kechagia, M., & Spinellis, D. (2017). Analyzing
Programming Languages’ Energy Consumption: An Empiri-
cal Study. Proceedings of the 21st Pan-Hellenic Conference

on Informatics.
[11] K im, S., Tomar, S., Vijaykrishnan, N., Kandemir, M., & Irwin,

M. (2004). Energy-Efϐicient Java Execution Using Local
Memory and Object Co-location. IEE Proceedings - Comput-
ers and Digital Techniques, 151(1), 33–42.

[12] L i, Y., & Jiang, Z. (2019). Assessing and Optimizing the Per-
formance Impact of the Just-in-Time Conϐiguration Param-
eters – A Case Study on PyPy. Empirical Software Engineer-
ing.

[13] C howdhury, R. R., Borle, N., & Ernst, R. (2018). GreenScaler:
Training software energy models with automatic test gener-
ation. Proceedings of the 2018 IEEE International Sympo-
sium on Software Reliability Engineering Workshops.

[14] W egener, S., Nikov, S., & Tverdokhlebov, A. (2023). Energ-
yAnalyzer: Using Static WCET Analysis Techniques to Es-
timate Software Energy Consumption. Proceedings of the
2023 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems.

[15] H aj-Yihia, M., & Ben-Asher, Y. (2017). Software Static Energy
Modeling for Modern Processors. Proceedings of the 2017
Design, Automation & Test in Europe Conference & Exhibi-
tion.

[16] R aheem, A., Osilaja, A. M., Kolawole, I., & Essien, V. E. (2024).
Exploring continuous integration and deployment strate-
gies for streamlined DevOps processes in software engi-
neering practices. World Journal of Advanced Research and
Reviews.

[17] G owda, P. G., Stanley, N. S. A., & Joyce, J. E. (2024). DevOps
Dynamics: Tools Driving Continuous Integration and De-
ployment. 2024 IEEE International Conference on IT, Elec-
tronics and Intelligent Communication Systems.

[18] J ohnson, O. B., Olamijuwon, J., Samira, Z., Osundare, O. S., &
Ekpobimi, H. O. (2024). Developing advanced CI/CD pipe-
line models for Java and Python applications. Computer Sci-
ence & IT Research Journal.

[19] D achepally, R. (2021). CI/CD Pipelines: Best Practices for
Modern Enterprises. International Journal of Scientiϔic Re-
search in Engineering and Management.

[20] S amira, Z., Weldegeorgise, G. T., Okeke, C. N., & Shonubi, K.
A. (2024). CI/CD model for optimizing software deployment
in SMEs.

Received: May 7, 2025
Accepted: May 25, 2025

June 2025 Journal of Information Technology and Applications 53

JITA 15(2025) 1:45-54 PERO RANILOVIĆ, ET AL.

FÊÙ �®ã�ã®ÊÄ
Pero Ranilović, Dražen Marinković, Energy Efϐiciency as a New Paradigm in Software Engineering, JITA – Journal of Information
Technology and Applications, Banja Luka, Pan-Europien University APEIRON, Banja Luka, Republika Srpska, Bosna i Hercegovina,
JITA 15(2025)1:45-54, (UDC: 004.41:004.738.5), (DOI: 10.7251/JIT2501045R), Volume 15, Number 1, Banja Luka, June (1-80), ISSN
2232-9625 (print), ISSN 2233-0194 (online), UDC 004

A�Êçã ã«� �çã«ÊÙÝ
Pero Ranilović was born in Prijedor, Republic
of Srpska, Bosnia and Herzegovina. He gradu-
ated from Grammar School “Petar Kočić” in
Novi Grad. He earned his Bachelor’s degree
in Programming and Software Engineering
from the Faculty of Information Technology at
Pan-European University “APEIRON” in Banja

Luka, where he also completed his Master’s degree. Since 2018,
he has been employed as a Software Developer at Lanaco. In ad-
dition, he works as a Teaching Assistant at Pan-European Uni-
versity “APEIRON”. He is currently pursuing his PhD studies in
the ϐield of Information Technology at Pan-European University
“APEIRON”.

Dražen Marinković was born in 1978. He
received his M.Sc. degree in 2015 and Ph.D.
degree in 2020, both from the Faculty of In-
formatics at the Pan-European University
Apeiron in Banja Luka, specializing in com-
puter and informatics engineering. He is cur-
rently an associate professor at the Faculty

of Informatics, Pan-European University Apeiron. His research
interests include data science, computer networks, and related
ϐields in modern computing technologies.

54 Journal of Information Technology and Applications www.jita-au.com

