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Abstract: This paper presents a comprehensive overview of energy efϐiciency as a modern engineering paradigm in software 
development. With growing demands on digital infrastructure and increasing energy consumption in information and 
communication technologies (ICT), optimizing software for energy performance has become a key quality requirement—alongside 
scalability, performance, and security. Drawing from international standards (such as ISO/IEC 25010), sustainability frameworks 
(e.g., Green Software Foundation), and relevant scientiϐic literature, the paper analyzes how architectural choices, programming 
languages, software practices, and toolchains inϐluence energy usage. It further highlights good engineering practices, comparative 
language benchmarks, and the integration of energy awareness into modern development workϐlows, such as DevOps and CI/
CD pipelines. The aim is to raise awareness among software engineers and decision-makers about the importance of sustainable 
software design and to offer practical guidelines for building energy-conscious systems.
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In the past decade, we have witnessed a signiϐicant 

increase in energy consumption within the ϐield of 
information and communication technologies (ICT), 
driven by the rising use of mobile devices, data cen-
ters, smart systems, and the Internet of Things (IoT). 
Although hardware has become notably more ener-
gy-efϐicient, the overall energy consumption contin-
ues to grow—partly because software is still not de-
signed with energy efϐiciency as a core principle. This 
phenomenon is known as the “rebound effect,” where 
gains achieved in hardware efϐiciency are offset by 
increased demands placed on software systems [1].

Today, software not only governs the functionality 
of systems but also determines how energy is con-
sumed across all layers of a system. Consequently, 
there is an emerging need for energy efϐiciency to be 
treated not as a secondary concern, but as a funda-
mental non-functional requirement of modern soft-
ware—on par with security, scalability, and perfor-
mance[2]. 

According to the ISO/IEC 25010 international 
standard, energy efϐiciency is deϐined as one of the 
sub-characteristics of performance efϐiciency in 
software. This requirement implies that the system 
should use a minimal amount of resources (including 
energy) to achieve the required functionality [3]. In 
this context, energy efϐiciency is not optional—it is an 
integrated component of overall software quality.

An increasing number of organizations and insti-
tutions, including the Green Software Foundation and 
IEEE, are advocating for the integration of energy op-
timization measures from the earliest stages of soft-
ware development [4]. 

The aim of this paper is to provide a compre-
hensive overview of energy efϐiciency as a modern 
engineering paradigm in software development, 
drawing on relevant expert literature, technical 
standards, and current engineering practices. In ad-
dition, the paper includes selected analyses from 
contemporary scientiϐic research to further support 
its conclusions.

June 2025        Journal of Information Technology and Applications        45



JITA 15(2025) 1:45-54 PERO RANILOVIĆ, ET AL.

The structure of the paper follows a logical pro-
gression—from deϐining theoretical and regulatory 
frameworks, through technical factors inϐluencing 
energy consumption, to an analysis of tools, pro-
gramming languages, and engineering practices that 
contribute to the development of energy-conscious 
software.

Standards and Theoretical Frameworks for 
Energy-Efϐicient Software
One of the foundational documents for deϐining 

software quality is the international standard ISO/
IEC 25010:2011, which explicitly includes energy 
efϐiciency as a key subcharacteristic of performance 
efϐiciency, alongside system responsiveness and 
resource utilization[3]. According to the standard, 
energy efϐiciency refers to the degree to which a 
software product uses appropriate amounts of re-
sources relative to the performance it delivers. This 
implies that efϐicient software should fulϐill its func-
tions while minimizing energy consumption—an 
especially important requirement in environments 
with limited computational capacity, such as em-
bedded systems, mobile devices, and wireless sen-
sor networks.

In addition to ISO standards, the ϐield of ener-
gy-aware computing has seen increasing support 
through technical initiatives and environmental reg-
ulations. Notable among these are the IEEE 1680.1 
and 1680.2 standards, which address the environ-
mental performance of electronic products, includ-
ing software bundled with hardware (e.g., ϐirmware, 
drivers). These standards provide guidance for eval-
uating the energy and environmental impact across 
the lifecycle of IT products [1] .

A more recent and inϐluential initiative is the Green 
Software Foundation, which advocates for sustain-
able software engineering practices. Their principles 
emphasize energy measurability, design efϐiciency, 
data minimization, and climate impact awareness in 
software decision-making [4]. These concepts aim to 
embed sustainability into every phase of the software 
lifecycle—from design to deployment.

These efforts are further supported by global pol-
icy frameworks, such as the United Nations Sus-
tainable Development Goals (SDGs), particularly 
SDG 9 (Industry, Innovation and Infrastructure) and 
SDG 12 (Responsible Consumption and Production), 

which call for technological innovation aligned with 
environmental limits [2].

The concept of sustainability is now increasingly 
integrated into software engineering not only as a 
social responsibility but also as a strategic design 
objective. This is best exempliϐied in the growing 
adoption of ESG (Environmental, Social, and Gov-
ernance) frameworks across the tech sector, where 
energy-efϐicient software contributes directly to 
the environmental pillar. Recent studies highlight 
how responsible AI, cloud infrastructure, and IoT 
systems are reshaping how developers incorporate 
energy considerations into software design from the 
outset [2].

As these frameworks and standards become em-
bedded into standard development workϐlows, en-
ergy efϐiciency is no longer a feature of innova-
tion—it is a requirement of modern engineering 
responsibility.

Factors Inϐluencing Energy Consumption in 
Software Systems
Understanding what drives energy consumption 

in software systems is essential for engineers striv-
ing to build sustainable and resource-conscious so-
lutions. Multiple interdependent factors shape how 
much energy is consumed—from system architec-
ture and algorithm design to programming language, 
memory usage, and I/O behavior. Addressing these 
factors in a systematic way can substantially reduce 
the energy footprint of software.

One of the most fundamental inϐluences lies in the 
software architecture. The decision between mono-
lithic, microservice-based, or event-driven models 
has direct implications for energy use. Modular archi-
tectures often enable components to be independent-
ly paused or shut down during periods of low activity, 
thereby conserving power. However, microservices, 
while scalable and maintainable, introduce signiϐi-
cant communication overhead, especially in distrib-
uted systems, leading to increased network trafϐic 
and energy usage [5].

Algorithmic efϐiciency is another central deter-
minant. Efϐicient algorithms reduce the number of 
instructions executed by the processor, limiting both 
CPU cycles and memory accesses—two operations 
with high energy cost. For example, replacing linear 
search with binary search, or opting for a heap over 
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a simple list when managing priority queues, signiϐi-
cantly improves energy use. Memory-aware designs, 
such as tiling in matrix operations or optimized cach-
ing, have also been shown to cut energy costs across 
scientiϐic workloads [7].

The programming language used in a project 
also plays a notable role. A well-known study by 
Pereira et al. (2017) compared 27 programming lan-
guages across ten standard algorithms, measuring 
execution time, memory use, and energy consump-
tion. The study revealed that compiled, low-level 
languages like C and Rust consistently outperform 
interpreted languages like Python and JavaScript 
in terms of energy efϐiciency [6]. This is due to lower 
abstraction layers, reduced runtime overhead, and 
more granular memory control.

Functional programming languages (e.g., Haskell, 
Erlang) offer beneϐits in concurrency but may incur 
higher memory use due to immutable data struc-
tures. Therefore, the paradigm must align with the 
performance and energy proϐile of the application 
domain.

Among the most overlooked yet impactful con-
tributors to energy waste are input/output opera-
tions and memory access patterns. File reads and 
writes, frequent memory allocations, and repeated 
network calls can drastically inϐlate energy costs. For 
example, making uncached HTTP requests in a loop 
or executing poorly batched database queries can 
more than double energy use compared to optimized 
versions [5].

Additionally, metrics like cache hits/misses, 
context switches, and CPU migrations have been 
shown to correlate strongly with energy consump-
tion in empirical studies across multiple workloads. 
These metrics should therefore be monitored as part 
of any serious energy proϐiling effort.

In sum, optimizing for energy efϐiciency involves 
careful selection of architecture, algorithm, language, 
and system-level operations. Each design decision 
reverberates through the energy consumption chain, 
and only a holistic view can ensure effective improve-
ments.

Good Engineering Practices for Energy-
Efϐicient Development
Energy efϐiciency in software is not achieved by 

accident—it is the result of deliberate and thoughtful 

engineering practices. From the earliest design stages 
to deployment and testing, integrating sustainability-
oriented strategies can signiϐicantly reduce the total 
energy consumption of software systems. As with 
performance and scalability, addressing energy use is 
most effective when it is embedded from the begin-
ning of the development lifecycle.

Several well-established design principles have a 
particularly strong impact on reducing energy waste:

• Minimizing complexity: Simpliϐied, clean 
code and well-structured logic reduce the com-
putational overhead required for program exe-
cution. Reducing nested loops, redundant con-
ditions, and unnecessary abstractions allows 
the processor to complete tasks with fewer 
operations and lower power demand.

• Modularity: Dividing software into smaller, 
independent modules enables more efϐicient 
control over component execution. Modules 
not currently in use can be unloaded or deac-
tivated, particularly in mobile and embedded 
systems, thereby reducing background energy 
draw.

• Data locality: Ensuring that data is kept close 
to where it is processed (e.g., within the same 
memory hierarchy level or server node) signiϐi-
cantly reduces the need for resource-expensive 
memory accesses and network requests. This 
practice not only reduces latency but also en-
ergy costs tied to I/O and communication op-
erations [5].

• Avoiding unnecessary computation: Repeti-
tive function calls, redundant loops, polling 
mechanisms without delays, and repeated data 
loading are common sources of waste. Optimiz-
ing these patterns—by introducing caching, 
memoization, and lazy evaluation—can lead 
to substantial reductions in CPU activity and 
memory usage.

Although these principles are not new, they are 
deeply rooted in software craftsmanship values. For 
instance, the well-known book Clean Code by Robert 
C. Martin emphasizes clarity, modularity, and sim-
plicity—not with energy in mind, but for maintain-
ability and robustness. Yet, their implementation 
naturally supports energy efϐiciency as a beneϐicial 
side effect [8].
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Beyond good design, developers should be equally 
vigilant about eliminating anti-patterns—common 
but inefϐicient coding practices that contribute to un-
necessary energy use. These include:

• Repetitive execution of logic within tight loops, 
especially when the logic can be precomputed 
or simpliϐied;

• Repeatedly opening and closing ϐiles or data-
base connections instead of reusing persistent 
sessions;

• Memory mismanagement, such as allowing ob-
ject bloat or failing to deallocate unused mem-
ory, which leads to more frequent garbage col-
lection and higher RAM usage.

Modern development environments offer pow-
erful tools for detecting and addressing such inef-
ϐiciencies. Static code analyzers (e.g., SonarQube, 
Pylint) and proϐiling tools (e.g., GreenScaler for Java, 
Intel VTune, VisualVM) allow developers to identify 
bottlenecks and measure how different segments of 
the code contribute to CPU usage, memory allocation, 
and energy drain [6].

Practical Examples of Energy-Aware 
Engineering
Research from the Green Software Laboratory 

and ϐield studies [4] have identiϐied several coding 
strategies that consistently reduce software energy 
consumption. These are summarized in the table 1 
below:

Table 1. Summary of Key Coding Practices for Energy-Efϔicient 
Software Development

PracƟ ce DescripƟ on

Effi  cient algorithm selecƟ on
Replace costly operaƟ ons (e.g., Bubble 
Sort) with opƟ mized versions (e.g., Quick 
Sort).

Caching of results Store computaƟ on results to prevent 
repeated expensive operaƟ ons.

Lazy loading of components Load modules or libraries only when 
they are actually required.

Data compression before 
transmission

Reduce data size before network transfer 
to lower bandwidth and CPU use.

EliminaƟ on of “busy wait” 
loops

Avoid while(true) loops that consume 
CPU without producƟ ve work.

Load-aware system scaling Enable systems to downscale energy 
usage when demand is low.

Implementing these practices doesn’t necessarily 
require a shift in tooling or technology stack. In many 
cases, teams can begin by including energy-related 
checks in code reviews, deϐining internal guidelines 
that promote resource awareness, and using proϐiling 
data as part of standard QA procedures.

By embedding such practices into development 
culture, teams not only improve performance but 
also directly contribute to the global effort of reduc-
ing the carbon footprint of digital infrastructure.

Comparative Analysis of Programming 
Languages in Terms of Energy Efϐiciency
Programming languages vary signiϐicantly in their 

energy efϐiciency, which depends not only on how 
code is written but also on how it is compiled, execut-
ed, and optimized. Key factors include the language’s 
execution model (compiled vs. interpreted), memory 
management behavior, and compiler performance. 
When developing software for energy-constrained 
platforms—such as embedded systems, mobile de-
vices, or large-scale servers—choosing the right pro-
gramming language can substantially inϐluence the 
overall energy footprint of an application.

Empirical Measurements of Energy 
Consumption by Language
One of the most comprehensive studies in this 

area is the work by Pereira et al. (2017), which ana-
lyzed 27 programming languages across ten common 
algorithmic tasks. The study measured execution 
time, memory usage, and energy consumption[6].

Table 2. Comparative Analysis of Energy Efϔiciency, Execution 
Speed, and Memory Usage Across Programming Languages

Language Energy ConsumpƟ on ExecuƟ on 
Speed

Memory 
Usage

C Lowest Fastest Low

Rust Very low Fast Low

Java Medium Moderate High (GC 
overhead)

Python High Slow Moderate

JavaScript High Slow Moderate
Source: Pereira et al., 2017

These ϐindings suggest that compiled, low-level 
languages like C and Rust are far superior in ener-
gy-critical applications (Table 2). C, due to its mini-
mal runtime overhead and direct hardware access, 
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consistently ranks highest for efϐiciency. Rust, while 
higher-level and type-safe, still achieves near-C per-
formance due to its powerful compiler optimizations 
and memory safety features without garbage collec-
tion.

Languages such as Java and C# strike a balance by 
offering higher developer productivity through man-
aged runtime environments. However, their memory 
usage tends to be higher, especially in long-lived ap-
plications where garbage collection processes intro-
duce unpredictable spikes in CPU and memory activ-
ity [11].

In contrast, interpreted languages like Python and 
JavaScript perform the worst in terms of energy efϐi-
ciency. Their dynamic typing, runtime interpretation, 
and rich—but heavy—standard libraries result in 
both slower execution and greater energy consump-
tion [10].

Programming Paradigms and Their Energy 
Proϐiles
Besides language choice, the programming para-

digm plays a vital role in determining energy be-
havior. Imperative languages such as C and Go allow 
ϐine-grained control over memory and computation, 
leading to predictable and efϐicient execution paths. 
Functional languages, such as Haskell or Erlang, often 
favor immutability and recursion, which can increase 
memory usage and stack depth—resulting in higher 
energy consumption unless carefully optimized [9].

Compiler behavior is also critical. For instance, 
enabling or disabling speciϐic compiler optimizations 
can have a dramatic impact on energy consumption. 
In the case of Haskell, Kirkeby et al. (2024) found that 
disabling just a few of the Glasgow Haskell Compiler 
(GHC) optimizations led to signiϐicantly less efϐicient 
executables, both in terms of time and energy. There-
fore, compiler conϐiguration must be considered as 
part of language energy proϐiling—not all compilers 
are equal, and settings such as -O2 or -fno-* ϐlags di-
rectly inϐluence energy outcomes.

Furthermore, the compilation process itself—how 
and when code is translated—matters. Interpreted 
code or just-in-time compiled (JIT) code (like PyPy 
for Python) often leads to higher startup costs and 
runtime overhead, though dynamic recompilation 
techniques are improving these deϐicits over time 
[12].

Practical Implications for Language Selection
When selecting a language for an energy-sensitive 

system, developers must weigh several factors:
• Execution duration and frequency: For applica-

tions that run continuously (e.g., backend ser-
vices), using efϐicient compiled languages (like 
C or Rust) can signiϐicantly reduce operational 
costs and environmental impact.

• Platform limitations: On devices with strict 
energy budgets (e.g., IoT sensors), interpreted 
languages are often unsuitable.

• Development priorities: In scenarios where 
rapid prototyping is more valuable than run-
time efϐiciency, interpreted or semi-compiled 
languages may still be acceptable.

Nevertheless, energy efϐiciency should increasing-
ly be considered a ϐirst-class requirement in system 
design. Balancing development speed with sustain-
able execution is becoming a deϐining challenge of 
modern software engineering.

Tools and Techniques for Measuring Energy 
Efϐiciency in Software
Measurability is the foundation of every meaning-

ful optimization. In the context of energy-efϐicient 
software engineering, understanding how and where 
software consumes energy is critical for making in-
formed design and development decisions. While en-
ergy consumption has traditionally been associated 
with hardware, today a broad ecosystem of tools and 
techniques is available to help engineers quantify and 
optimize the energy footprint of software—from the 
earliest coding stages to full deployment.

Some tools rely on direct hardware-based mea-
surement using embedded sensors. For example, In-
tel Power Gadget enables precise monitoring of CPU 
energy use in real time on Intel platforms. These tools 
offer high measurement accuracy but are limited to 
speciϐic hardware architectures, reducing their por-
tability and broader applicability.

In addition to hardware-based tools, dynamic pro-
ϐiling solutions have become increasingly popular 
for capturing real-time energy behavior of software 
during execution. A notable example is GreenScaler, 
which automatically generates test cases to construct 
energy models of applications. This proϐiler helps 
developers detect energy regressions between soft-
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ware versions and is especially useful in mobile or 
resource-constrained environments [13].

For embedded systems and IoT applications, where 
energy is a critical constraint, static analysis tools pro-
vide a different type of insight. These tools estimate en-
ergy consumption by analyzing the program’s control 
ϐlow and logic without needing to execute the code. For 
instance, EnergyAnalyzer, developed under the Eu-
ropean TeamPlay project, uses worst-case execution 
time (WCET) techniques to estimate the energy cost 
of software components. This helps developers iden-
tify energy hotspots early in development, potentially 
even before full implementation[14].

Another line of work is focused on static energy 
modeling at the source-code level. Research by Haj-
Yihia and Ben-Asher (2017) demonstrates how 
symbolic execution and path analysis can be used to 
predict energy usage across various CPU architec-
tures. Their approach includes modeling memory us-
age and cache behavior, which are critical for accurate 
estimation of total energy cost [15]. While technically 
demanding, such tools offer valuable guidance during 
code optimization and compilation.

More and more organizations are integrating 
these tools into their CI/CD workϐlows. By tracking 
energy metrics along with traditional KPIs like per-
formance and security, energy efϐiciency becomes an 
embedded part of quality assurance. For example, 
GreenScaler can ϐlag inefϐicient changes in new code 
commits, while static analysis tools help developers 
conϐigure compilers or detect early inefϐiciencies.

Despite this progress, several challenges remain. 
Many tools are platform-speciϐic and rely on non-
standard metrics, making cross-platform comparison 
difϐicult. Furthermore, most solutions focus exclu-
sively on CPU consumption, neglecting other critical 
components such as GPUs, memory buses, and net-
work cards.

Looking ahead, the development of hybrid tools 
that combine static and dynamic analysis, along with 
standardized models for energy reporting, will be es-
sential. Such advancements would not only improve 
precision but also allow engineers to compare results 
across platforms and programming environments.

Ultimately, the ability to measure energy use in 
software is no longer a luxury—it is a professional 
necessity. Engineers equipped with the tools and 
knowledge to assess their code’s energy impact are 

better positioned to make sustainable, efϐicient, and 
forward-thinking design decisions in the digital age.

Integrating Energy Efϐiciency into the 
Software Development Lifecycle
As the awareness of sustainable engineering 

grows, software energy efϐiciency must be embedded 
not only in the product but also in the process. The 
integration of energy metrics into the software de-
velopment lifecycle (SDLC) is becoming an emerging 
best practice, particularly within Agile and DevOps 
frameworks.

Modern development teams rely heavily on Con-
tinuous Integration and Continuous Delivery (CI/
CD) pipelines to automate software testing and de-
ployment. These automated pipelines are now evolv-
ing to include energy proϐiling and optimization 
checkpoints. By integrating tools like GreenScaler 
and static energy analyzers into CI/CD, teams can 
continuously track and optimize energy usage during 
software builds and releases [16].

This integration doesn’t stop at tooling. Some or-
ganizations have begun deϐining “green” acceptance 
criteria as part of Agile user stories, ensuring that 
new features must meet both functional and energy 
efϐiciency requirements. This cultural shift promotes 
shared ownership of sustainability goals, aligning 
developers, testers, and operations teams under the 
same value system [17].

From a strategic standpoint, the most effective 
teams embed energy-awareness into three stages:

1. Pre-development planning: Estimating the 
energy cost of alternative implementation 
paths and choosing the most efϐicient.

2. Development and testing: Using proϐilers and 
simulators to test energy consumption during 
code changes.

3. Post-deployment monitoring: Logging real-
time energy metrics to dashboards, much like 
performance logs or error tracking.

Some DevOps pipelines now include feedback 
loops where energy regressions trigger alerts, 
just like failing tests. In one case study, applying this 
principle led to a 22% reduction in overall cloud in-
frastructure costs simply by removing a memory-
intensive module that previously went unnoticed in 
traditional code reviews [18].
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Organizations are also increasingly integrating 
energy analysis into code quality dashboards, using 
metrics such as energy per transaction, energy per 
test suite, and deployment energy impact. These in-
dicators provide clarity and accountability, enabling 
software teams to monitor their impact over time 
without disrupting their existing workϐlows [19].

Adopting energy-conscious practices within 
SDLC not only reduces environmental impact but 
also optimizes performance, infrastructure utiliza-
tion, and cost. As tooling and awareness continue 
to mature, integrating energy metrics into Agile and 
DevOps processes is transitioning from a novelty to 
a necessity.

 Experimental Validation of Energy-Efϐicient 
Coding Practices in .NET
To support the theoretical ϐindings and recom-

mendations outlined in this paper, a series of simple 
experiments were conducted using the .NET platform 
(C# language) in a local development environment. 
The goal was to observe and compare CPU resource 
utilization and execution time for different software 
operations. This practical component aimed to dem-
onstrate how various implementation choices—par-
ticularly algorithm efϐiciency, I/O operations, and par-
allelization strategies—can inϐluence energy-related 
metrics, even in small-scale desktop applications.

The rationale for measuring CPU usage stems 
from the fact that processor time is one of the most 
energy-intensive resources in computing systems. 
By monitoring CPU load during execution of selected 
methods, we obtain a proxy for energy consumption. 
Although these experiments do not measure energy 
in joules, they provide meaningful insights into com-
putational efϐiciency, which strongly correlates with 
energy use in real-world scenarios. The implemen-
tation of the measurement logic is shown in Figure 
1, where part of the source code demonstrates the 
usage of the Stopwatch class for execution time and 
the TotalProcessorTime property for calculating CPU 
usage. The testing was performed on a personal com-
puter equipped with the following speciϐications:

• Processor: 11th Gen Intel(R) Core(TM) i7-
1165G7 @ 2.80GHz

• RAM: 16 GB
• Operating System: Windows 10
• Development Framework: .NET 8 (C#)

The testing was done using the Stopwatch class 
from the System.Diagnostics namespace to measure 
execution time, and the TotalProcessorTime property 
from the current process to calculate CPU usage per-
centage (Figure 1). The measurements included:

• Algorithm comparison: A naïve implemen-
tation of the Bubble Sort algorithm was com-
pared with the optimized built-in Array.Sort() 
method on arrays of 100,000 elements.

• I/O operations: Two standard methods for 
reading large text ϐiles were compared — File.
ReadAllLines() vs. File.ReadLines() — to as-
sess how different memory-loading strategies 
affect performance.

• Parallel vs. serial execution: LINQ-based data 
processing was executed in both serial and Par-
allel.ForEach conϐigurations to investigate the 
tradeoff between parallelism and CPU usage.

Figure 1. Part of source Code for Experimental Measurements

These experiments, though relatively simple and 
time-limited, were chosen to illustrate the real im-
pact of code design decisions on resource consump-
tion. They were executed under consistent conditions 
and without background processes, ensuring reliabil-
ity of the results. The summarized results of all tests 
are presented in Table 3, showing both CPU usage 
percentage and execution time for each operation. 
Additionally, Graph 1 visualizes CPU usage by opera-
tion type, with color-coded categories to emphasize 
differences across algorithmic, I/O, and data process-
ing domains. 
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These ϐindings clearly demonstrate that more “op-
timized” or built-in solutions tend to consume fewer 
resources, while parallel execution, although poten-
tially faster in theory, may introduce overheads that 
reduce energy efϐiciency for moderate workloads. 
The experiments underscore the importance of per-
formance-conscious design choices and support the 
thesis that energy efϐiciency should be considered a 
core concern in everyday software development. The 
results were systematically recorded and summa-
rized in the following table:

Table 3. Comparative Analysis of Energy Efϔiciency, Execution 
Speed, and Memory Usage Across Programming Languages

OperaƟ on CPU Usage (%) Time (ms)

Bubble Sort (100,000 items) 12.35% 42,434

Array.Sort (100,000 items) 10.45% 7

File.ReadAllLines (100,000) 11.49% 16

File.ReadLines (100,000) 8.03% 24

Serial LINQ Processing 10.93% 35.74

Parallel LINQ Processing 34.50% 101.89

Graph 1. CPU Usage by Operation

These experimental results, although limited in 
scope, offer compelling validation for the theoreti-
cal principles discussed throughout the paper. They 
highlight how even basic implementation choices can 
substantially affect CPU utilization and performance. 
Integrating such lightweight measurement strategies 
into standard development workϐlows can help teams 
build more energy-conscious software without requir-
ing complex infrastructure or tools. Future research and 
practice should focus on expanding this methodology 
with more precise energy metering tools and broader 
test coverage across different platforms and workloads.

CÊÄ�½çÝ®ÊÄ
The integration of energy efϐiciency into software 

engineering marks a signiϐicant evolution in how 
digital systems are conceived, developed, and main-
tained. No longer relegated to low-level hardware 
concerns or experimental projects, energy-aware 
programming has become a critical aspect of respon-
sible, modern software development. As demonstrat-
ed in this paper, energy efϐiciency must be treated as 
a ϐirst-class non-functional requirement—alongside 
performance, scalability, and security—especially as 
computing ecosystems grow increasingly complex 
and resource-intensive.

Global standards such as ISO/IEC 25010 and ini-
tiatives like the Green Software Foundation have laid 
a strong foundation for embedding sustainability 
into engineering processes (ISO/IEC 25010, 2011), 
(Green Software Foundation, 2022). Software design 
choices—from programming languages and data 
structures to CI/CD pipeline conϐigurations—play a 
decisive role in shaping the energy proϐile of applica-
tions. Moreover, empirical studies have underscored 
the tangible impact that these decisions have on re-
source consumption across different execution envi-
ronments [6].

Despite promising advances, several challenges 
remain. Tooling for real-time and ϐine-grained energy 
measurement is still fragmented and not yet stan-
dardized across platforms. Educational curricula have 
yet to fully integrate sustainable software practices, 
leaving a knowledge gap among new developers. In-
dustry adoption is also uneven—particularly among 
small and medium-sized enterprises (SMEs)—due to 
the perceived overhead of incorporating energy met-
rics into workϐlows [20].

Looking forward, future research and practice 
should aim to address these gaps through:

• Standardized tooling: Developing cross-plat-
form tools and APIs for measuring and visual-
izing energy usage in a consistent and vendor-
neutral way.

• Developer education: Introducing energy-
aware programming as a core module in soft-
ware engineering education, supported by in-
teractive labs and gamiϐied challenges.

• Policy integration: Encouraging government 
and enterprise procurement policies to priori-
tize energy-aware software products.
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• Holistic frameworks: Building uniϐied models 
that integrate energy metrics into quality as-
surance, compliance, and continuous integra-
tion pipelines[18].

A simple experimental case study presented in 
this paper has further illustrated how basic code-lev-
el decisions—such as algorithm choice, ϐile handling, 
or parallelization—can lead to measurable differenc-
es in CPU usage and execution time, reinforcing the 
importance of energy-conscious design.

The road to widespread adoption of energy-aware 
software engineering will require continued collabo-
ration across academia, industry, and policy makers. 
However, the potential beneϐits—both ecological 
and economic—make this a worthy and necessary 
pursuit. Energy-efϐicient software is not only about 
conserving watts; it’s about building a more sustain-
able digital future. It is also important to note that 
the availability of high-quality research on this topic 
remains limited, and future studies should focus on 
developing standardized methodologies and tools for 
measuring software energy efϐiciency.
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