JITA

JITA Journal of Information Technology and Applications

Vol. 6 No. 1 (2018): JITA - APEIRON

Asmir Handžić

Online evaluation of recommender system with MovieLens dataset

Original scientific paper

DOI: https://doi.org/10.7251/JIT16020H

Abstract

The purpose of this paper is to explore the advantages of recommender systems based on the matrix factorization in respect to classical first neighbor recommender systems to real users through A/B test, as these studies are more significant. The results presented in this paper confirms the hypothesis that the recommender systems based on the models of matrix factorization are superior in relation to classical nearest-neighbor recommender systems.

Keywords: Recommender systems, online evaluation, MovieLens, A/B test.

Vol. 26 No. 2 (2023): JITA - APEIRON

Igor Shubinsky, Alexey Ozerov

Application of Artificial Intelligence Methods for the Prediction of Hazardous Failures

Original scientific paper

Abstract

The availability of real-time data on the state of railway facilities and the state-of-the art technologies for data collection and analysis allow transition to the fourth generation maintenance. It is based on the prediction of the facility functional safety and dependability and the risk-oriented facility management. The article describes an approach to assessing the risks of hazardous facility failures using the latest digital data processing methods. The implementation of this approach will help set maintenance objectives and contribute to the efficient use of resources and the reduction of railway facility managers’ expenditures.

Keywords: predictive analysis, maintenance, functional safety, Big Data, Data Science, risk indicators.

Vol. 26 No. 2 (2023): JITA - APEIRON

Igor Shubinsky, Alexey Ozerov

Application of Artificial Intelligence Methods for the Prediction of Hazardous Failures

Original scientific paper

Abstract

The availability of real-time data on the state of railway facilities and the state-of-the art technologies for data collection and analysis allow transition to the fourth generation maintenance. It is based on the prediction of the facility functional safety and dependability and the risk-oriented facility management. The article describes an approach to assessing the risks of hazardous facility failures using the latest digital data processing methods. The implementation of this approach will help set maintenance objectives and contribute to the efficient use of resources and the reduction of railway facility managers’ expenditures.

Keywords: predictive analysis, maintenance, functional safety, Big Data, Data Science, risk indicators.